Grammar induction from visual, speech and text

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu Zhao , Hao Fei , Shengqiong Wu , Meishan Zhang , Min Zhang , Tat-seng Chua
{"title":"Grammar induction from visual, speech and text","authors":"Yu Zhao ,&nbsp;Hao Fei ,&nbsp;Shengqiong Wu ,&nbsp;Meishan Zhang ,&nbsp;Min Zhang ,&nbsp;Tat-seng Chua","doi":"10.1016/j.artint.2025.104306","DOIUrl":null,"url":null,"abstract":"<div><div>Grammar Induction (GI) seeks to uncover the underlying grammatical rules and linguistic patterns of a language, positioning it as a pivotal research topic within Artificial Intelligence (AI). Although extensive research in GI has predominantly focused on text or other singular modalities, we reveal that GI could significantly benefit from rich heterogeneous signals, such as text, vision, and acoustics. In the process, features from distinct modalities essentially serve complementary roles to each other. With such intuition, this work introduces a novel <em>unsupervised visual-audio-text grammar induction</em> task (named <strong>VAT-GI</strong>), to induce the constituent grammar trees from parallel images, text, and speech inputs. Inspired by the fact that language grammar natively exists beyond the texts, we argue that the text has not to be the predominant modality in grammar induction. Thus we further introduce a <em>textless</em> setting of VAT-GI, wherein the task solely relies on visual and auditory inputs. To approach the task, we propose a visual-audio-text inside-outside recursive autoencoder (<strong>VaTiora</strong>) framework, which leverages rich modal-specific and complementary features for effective grammar parsing. Besides, a more challenging benchmark data is constructed to assess the generalization ability of VAT-GI system. Experiments on two benchmark datasets demonstrate that our proposed VaTiora system is more effective in incorporating the various multimodal signals, and also presents new state-of-the-art performance of VAT-GI. Further in-depth analyses are shown to gain a deep understanding of the VAT-GI task and how our VaTiora system advances. Our code and data: <span><span>https://github.com/LLLogen/VAT-GI/</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"341 ","pages":"Article 104306"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000256","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Grammar Induction (GI) seeks to uncover the underlying grammatical rules and linguistic patterns of a language, positioning it as a pivotal research topic within Artificial Intelligence (AI). Although extensive research in GI has predominantly focused on text or other singular modalities, we reveal that GI could significantly benefit from rich heterogeneous signals, such as text, vision, and acoustics. In the process, features from distinct modalities essentially serve complementary roles to each other. With such intuition, this work introduces a novel unsupervised visual-audio-text grammar induction task (named VAT-GI), to induce the constituent grammar trees from parallel images, text, and speech inputs. Inspired by the fact that language grammar natively exists beyond the texts, we argue that the text has not to be the predominant modality in grammar induction. Thus we further introduce a textless setting of VAT-GI, wherein the task solely relies on visual and auditory inputs. To approach the task, we propose a visual-audio-text inside-outside recursive autoencoder (VaTiora) framework, which leverages rich modal-specific and complementary features for effective grammar parsing. Besides, a more challenging benchmark data is constructed to assess the generalization ability of VAT-GI system. Experiments on two benchmark datasets demonstrate that our proposed VaTiora system is more effective in incorporating the various multimodal signals, and also presents new state-of-the-art performance of VAT-GI. Further in-depth analyses are shown to gain a deep understanding of the VAT-GI task and how our VaTiora system advances. Our code and data: https://github.com/LLLogen/VAT-GI/.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信