{"title":"Dyamond: Compact and Efficient 1T1C DRAM IMC Accelerator With Bit Column Addition for Memory-Intensive AI","authors":"Seongyon Hong;Wooyoung Jo;Sangjin Kim;Sangyeob Kim;Soyeon Um;Kyomin Sohn;Hoi-Jun Yoo","doi":"10.1109/JSSC.2025.3538899","DOIUrl":null,"url":null,"abstract":"This article proposes Dyamond, a one transistor, one capacitor (1T1C) dynamic random access memory (DRAM) in-memory computing (IMC) accelerator with architecture-to-circuit-level optimizations for high memory density and energy efficiency. The bit column addition (BCA) dataflow introduces output bit-wise accumulation to exploit varying accuracy and energy characteristics across different bit positions. The lower BCA (LBCA) reduces analog-to-digital converter (ADC) operations to enhance energy efficiency with inter-column analog accumulation. The higher BCA (HBCA) improves accuracy through signal enhancement and minimizes energy consumption per ADC readout with signal shift (SS). The design maximizes memory density by dedicating 1T1C cells solely to memory and integrating a compact computation circuit adjacent to the bitline sense amplifier. The memory access power is further reduced with a big-little array structure and a switchable sense amplifier (SWSA), which trades off retention time and energy consumption. Fabricated in 28-nm CMOS, Dyamond integrates 3.54-MB DRAM in a 6.48-mm2 area, achieving 27.2 TOPS/W peak efficiency and outstanding performance in advanced models such as BERT and GPT-2.","PeriodicalId":13129,"journal":{"name":"IEEE Journal of Solid-state Circuits","volume":"60 4","pages":"1299-1310"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Solid-state Circuits","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884546/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes Dyamond, a one transistor, one capacitor (1T1C) dynamic random access memory (DRAM) in-memory computing (IMC) accelerator with architecture-to-circuit-level optimizations for high memory density and energy efficiency. The bit column addition (BCA) dataflow introduces output bit-wise accumulation to exploit varying accuracy and energy characteristics across different bit positions. The lower BCA (LBCA) reduces analog-to-digital converter (ADC) operations to enhance energy efficiency with inter-column analog accumulation. The higher BCA (HBCA) improves accuracy through signal enhancement and minimizes energy consumption per ADC readout with signal shift (SS). The design maximizes memory density by dedicating 1T1C cells solely to memory and integrating a compact computation circuit adjacent to the bitline sense amplifier. The memory access power is further reduced with a big-little array structure and a switchable sense amplifier (SWSA), which trades off retention time and energy consumption. Fabricated in 28-nm CMOS, Dyamond integrates 3.54-MB DRAM in a 6.48-mm2 area, achieving 27.2 TOPS/W peak efficiency and outstanding performance in advanced models such as BERT and GPT-2.
期刊介绍:
The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits. It also provides coverage of topics such as circuits modeling, technology, systems design, layout, and testing that relate directly to IC design. Integrated circuits and VLSI are of principal interest; material related to discrete circuit design is seldom published. Experimental verification is strongly encouraged.