Liu Yu, Wen Li, Jiahui Cao, Rourou Miao, Yiqiu Fu, Xinyi Wang, Juntao Xie, Wen Zhang, Zhuo Mao, Hanjie Zhang, Yushi Zhang, Meitong Ou, Lin Mei
{"title":"Remodeling Tumor Metabolism via Self-Amplifying Energy-Depleting Nanocomplexes for Effective Photodynamic-Immunotherapy","authors":"Liu Yu, Wen Li, Jiahui Cao, Rourou Miao, Yiqiu Fu, Xinyi Wang, Juntao Xie, Wen Zhang, Zhuo Mao, Hanjie Zhang, Yushi Zhang, Meitong Ou, Lin Mei","doi":"10.1002/adfm.202425831","DOIUrl":null,"url":null,"abstract":"<p>The abnormal metabolism of tumor cells fulfills their high energy demands for rapid growth while simultaneously reshaping the tumor microenvironment (TME), which suppresses immune cell function and facilitates immune evasion. Herein, a peptide-based nanocomplex (DCK@siGLUT1) that synergizes with photodynamic therapy (PDT) to disrupt tumor cell energy metabolism is developed. DCK@siGLUT1, utilizing a mitochondria-targeting peptide (dKLA) selectively accumulates in mitochondria, where it impairs mitochondrial membrane integrity, disrupts energy metabolism, and induces apoptosis. Upon apoptosis, activated caspase-3 (Casp3) cleaves DCK@siGLUT1, releasing siGLUT1 to silence glucose transporter 1 (GLUT1) expression, which further inhibits glucose uptake and intensifies metabolic collapse, thereby amplifying apoptotic effects. Moreover, Ce6, conjugated to dKLA, is co-delivered to the mitochondria and, upon light activation, exacerbates mitochondrial damage and metabolic disruption. These combined mechanisms intensify oxidative stress and apoptosis, further activate Casp3, and promote DCK@siGLUT1 cleavage, thereby driving a self-amplifying tumoricidal cascade. Furthermore, DCK@siGLUT1 effectively induces immunogenic cell death (ICD), triggers antitumor immune responses, and inhibits both primary and distant tumor growth and metastasis. This strategy offers a novel approach for targeting tumor energy metabolism in antitumor immunotherapy.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 28","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202425831","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The abnormal metabolism of tumor cells fulfills their high energy demands for rapid growth while simultaneously reshaping the tumor microenvironment (TME), which suppresses immune cell function and facilitates immune evasion. Herein, a peptide-based nanocomplex (DCK@siGLUT1) that synergizes with photodynamic therapy (PDT) to disrupt tumor cell energy metabolism is developed. DCK@siGLUT1, utilizing a mitochondria-targeting peptide (dKLA) selectively accumulates in mitochondria, where it impairs mitochondrial membrane integrity, disrupts energy metabolism, and induces apoptosis. Upon apoptosis, activated caspase-3 (Casp3) cleaves DCK@siGLUT1, releasing siGLUT1 to silence glucose transporter 1 (GLUT1) expression, which further inhibits glucose uptake and intensifies metabolic collapse, thereby amplifying apoptotic effects. Moreover, Ce6, conjugated to dKLA, is co-delivered to the mitochondria and, upon light activation, exacerbates mitochondrial damage and metabolic disruption. These combined mechanisms intensify oxidative stress and apoptosis, further activate Casp3, and promote DCK@siGLUT1 cleavage, thereby driving a self-amplifying tumoricidal cascade. Furthermore, DCK@siGLUT1 effectively induces immunogenic cell death (ICD), triggers antitumor immune responses, and inhibits both primary and distant tumor growth and metastasis. This strategy offers a novel approach for targeting tumor energy metabolism in antitumor immunotherapy.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.