Remodeling Tumor Metabolism via Self-Amplifying Energy-Depleting Nanocomplexes for Effective Photodynamic-Immunotherapy

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liu Yu, Wen Li, Jiahui Cao, Rourou Miao, Yiqiu Fu, Xinyi Wang, Juntao Xie, Wen Zhang, Zhuo Mao, Hanjie Zhang, Yushi Zhang, Meitong Ou, Lin Mei
{"title":"Remodeling Tumor Metabolism via Self-Amplifying Energy-Depleting Nanocomplexes for Effective Photodynamic-Immunotherapy","authors":"Liu Yu,&nbsp;Wen Li,&nbsp;Jiahui Cao,&nbsp;Rourou Miao,&nbsp;Yiqiu Fu,&nbsp;Xinyi Wang,&nbsp;Juntao Xie,&nbsp;Wen Zhang,&nbsp;Zhuo Mao,&nbsp;Hanjie Zhang,&nbsp;Yushi Zhang,&nbsp;Meitong Ou,&nbsp;Lin Mei","doi":"10.1002/adfm.202425831","DOIUrl":null,"url":null,"abstract":"<p>The abnormal metabolism of tumor cells fulfills their high energy demands for rapid growth while simultaneously reshaping the tumor microenvironment (TME), which suppresses immune cell function and facilitates immune evasion. Herein, a peptide-based nanocomplex (DCK@siGLUT1) that synergizes with photodynamic therapy (PDT) to disrupt tumor cell energy metabolism is developed. DCK@siGLUT1, utilizing a mitochondria-targeting peptide (dKLA) selectively accumulates in mitochondria, where it impairs mitochondrial membrane integrity, disrupts energy metabolism, and induces apoptosis. Upon apoptosis, activated caspase-3 (Casp3) cleaves DCK@siGLUT1, releasing siGLUT1 to silence glucose transporter 1 (GLUT1) expression, which further inhibits glucose uptake and intensifies metabolic collapse, thereby amplifying apoptotic effects. Moreover, Ce6, conjugated to dKLA, is co-delivered to the mitochondria and, upon light activation, exacerbates mitochondrial damage and metabolic disruption. These combined mechanisms intensify oxidative stress and apoptosis, further activate Casp3, and promote DCK@siGLUT1 cleavage, thereby driving a self-amplifying tumoricidal cascade. Furthermore, DCK@siGLUT1 effectively induces immunogenic cell death (ICD), triggers antitumor immune responses, and inhibits both primary and distant tumor growth and metastasis. This strategy offers a novel approach for targeting tumor energy metabolism in antitumor immunotherapy.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 28","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202425831","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The abnormal metabolism of tumor cells fulfills their high energy demands for rapid growth while simultaneously reshaping the tumor microenvironment (TME), which suppresses immune cell function and facilitates immune evasion. Herein, a peptide-based nanocomplex (DCK@siGLUT1) that synergizes with photodynamic therapy (PDT) to disrupt tumor cell energy metabolism is developed. DCK@siGLUT1, utilizing a mitochondria-targeting peptide (dKLA) selectively accumulates in mitochondria, where it impairs mitochondrial membrane integrity, disrupts energy metabolism, and induces apoptosis. Upon apoptosis, activated caspase-3 (Casp3) cleaves DCK@siGLUT1, releasing siGLUT1 to silence glucose transporter 1 (GLUT1) expression, which further inhibits glucose uptake and intensifies metabolic collapse, thereby amplifying apoptotic effects. Moreover, Ce6, conjugated to dKLA, is co-delivered to the mitochondria and, upon light activation, exacerbates mitochondrial damage and metabolic disruption. These combined mechanisms intensify oxidative stress and apoptosis, further activate Casp3, and promote DCK@siGLUT1 cleavage, thereby driving a self-amplifying tumoricidal cascade. Furthermore, DCK@siGLUT1 effectively induces immunogenic cell death (ICD), triggers antitumor immune responses, and inhibits both primary and distant tumor growth and metastasis. This strategy offers a novel approach for targeting tumor energy metabolism in antitumor immunotherapy.

Abstract Image

通过自我放大能量消耗纳米复合物重建肿瘤代谢,实现有效的光动力免疫治疗
肿瘤细胞的异常代谢在满足其快速生长的高能量需求的同时,重塑肿瘤微环境(tumor microenvironment, TME),抑制免疫细胞功能,促进免疫逃逸。本文开发了一种基于肽的纳米复合物(DCK@siGLUT1),它与光动力疗法(PDT)协同作用,破坏肿瘤细胞的能量代谢。DCK@siGLUT1,利用线粒体靶向肽(dKLA)选择性地在线粒体中积累,在那里它损害线粒体膜的完整性,破坏能量代谢,并诱导细胞凋亡。凋亡发生时,活化的caspase-3 (Casp3)裂解DCK@siGLUT1,释放siGLUT1沉默葡萄糖转运蛋白1 (GLUT1)的表达,进一步抑制葡萄糖摄取,加剧代谢崩溃,从而放大凋亡效应。此外,Ce6与dKLA偶联,共同递送到线粒体,在光激活下,加剧线粒体损伤和代谢中断。这些联合机制强化氧化应激和细胞凋亡,进一步激活Casp3,促进DCK@siGLUT1裂解,从而驱动一个自我放大的杀肿瘤级联反应。此外,DCK@siGLUT1有效诱导免疫原性细胞死亡(ICD),触发抗肿瘤免疫反应,抑制原发和远处肿瘤的生长和转移。该策略为靶向肿瘤能量代谢的抗肿瘤免疫治疗提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信