Selective Electrochemical CO2 Reduction to Ethylene or Ethanol via Tuning *OH Adsorption

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dazhong Zhong, Qiang Fang, Runxin Du, Yaxin Jin, Chen Peng, Dongfang Cheng, Tan Li, Tao Zhao, Sheng Zhang, Yao Zheng, Qiang Zhao, Yuhan Sun, Jinping Li
{"title":"Selective Electrochemical CO2 Reduction to Ethylene or Ethanol via Tuning *OH Adsorption","authors":"Dazhong Zhong, Qiang Fang, Runxin Du, Yaxin Jin, Chen Peng, Dongfang Cheng, Tan Li, Tao Zhao, Sheng Zhang, Yao Zheng, Qiang Zhao, Yuhan Sun, Jinping Li","doi":"10.1002/anie.202501773","DOIUrl":null,"url":null,"abstract":"Selective electrocatalytic reduction of carbon dioxide (CO2RR) into ethylene (C2H4) or ethanol (C2H5OH) is a high challenge. In this study, the rational manipulating of Cu defect sites was realized for the selective formation of C2H5OH and C2H4. Low‐coordination amorphous and medium‐coordination grain‐boundary Cu defect sites with different *OH affinity were found to play a decisive role in the selective protonation of CH2CHO*. In particular, grain‐boundary‐rich Cu (denoted as Cu‐1) that weakly adsorbed *OH and CH2CHO* favored the protonation on β‐C of CH2CHO*, leading to the selective production of C2H5OH. In contrast, amorphous Cu defect sites (denoted as Cu‐3) showed strong *OH adsorption and then strong CH2CHO* adsorption, facilitating C–O breaking and C2H4 formation. In the membrane electrode assembly (MEA) configuration, a remarkably high full‐cell energy efficiency (EE) of 29.0% for C2H5OH on Cu‐1 and an impressive high full‐cell EE of 25.6% for C2H4 on Cu‐3 were observed. In addition, a C2H4 Faradaic efficiency (FE) of 63.4±1.5% was achieved on Cu‐3 at a notable current of 12.5 A with a 25 cm‐2 MEA configuration. These results provided crucial insights into the significance of defect sites in realizing the adsorption of *OH for the selective production of C2H4 or C2H5OH.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"21 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501773","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective electrocatalytic reduction of carbon dioxide (CO2RR) into ethylene (C2H4) or ethanol (C2H5OH) is a high challenge. In this study, the rational manipulating of Cu defect sites was realized for the selective formation of C2H5OH and C2H4. Low‐coordination amorphous and medium‐coordination grain‐boundary Cu defect sites with different *OH affinity were found to play a decisive role in the selective protonation of CH2CHO*. In particular, grain‐boundary‐rich Cu (denoted as Cu‐1) that weakly adsorbed *OH and CH2CHO* favored the protonation on β‐C of CH2CHO*, leading to the selective production of C2H5OH. In contrast, amorphous Cu defect sites (denoted as Cu‐3) showed strong *OH adsorption and then strong CH2CHO* adsorption, facilitating C–O breaking and C2H4 formation. In the membrane electrode assembly (MEA) configuration, a remarkably high full‐cell energy efficiency (EE) of 29.0% for C2H5OH on Cu‐1 and an impressive high full‐cell EE of 25.6% for C2H4 on Cu‐3 were observed. In addition, a C2H4 Faradaic efficiency (FE) of 63.4±1.5% was achieved on Cu‐3 at a notable current of 12.5 A with a 25 cm‐2 MEA configuration. These results provided crucial insights into the significance of defect sites in realizing the adsorption of *OH for the selective production of C2H4 or C2H5OH.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信