Kaihui Xia , Meng Qin , Mingming Han , Xianming Zhang , Xiaoguo Wu , Mingyuan Liu , Shang Liu , Xinkai Wang , Wei Liu , Zhouqing Xie , Renmin Yuan , Qifan Liu
{"title":"Elucidating the size distribution of p‑Phenylenediamine-Derived quinones in atmospheric particles","authors":"Kaihui Xia , Meng Qin , Mingming Han , Xianming Zhang , Xiaoguo Wu , Mingyuan Liu , Shang Liu , Xinkai Wang , Wei Liu , Zhouqing Xie , Renmin Yuan , Qifan Liu","doi":"10.1016/j.envint.2025.109329","DOIUrl":null,"url":null,"abstract":"<div><div>Transformed from <em>p</em>-phenylenediamines (PPDs) antioxidant, PPD-derived quinones (PPD-Qs) have recently been recognized as emerging contaminants due to their potential negative impacts on the environment and human health. While there have been measurements of airborne PPD-Qs, the size distribution of PPD-Qs and the impact of particle size on PPD transformation chemistry remain largely unknown. Here, through the measurements of atmospheric particles in three megacities in China (Beijing, Xi’an, and Hefei), we find that PPD-Qs are widely distributed in these cities. Further analysis of the size-fractioned particles in Hefei indicates that 48 % of PPD-Qs reside in coarse particles. Given that previous studies mainly focus on the measurement of PPD-Qs in fine particles, the previously reported PPD-Q concentrations and the corresponding human exposure dosages are likely to be significantly underestimated. Furthermore, the ratio of PPD-Q to PPD concentration (PPD-Q/PPD) for particles with size range of 0.056 − 0.1 μm is up to 3 times higher than that with size range of 10 − 18 μm, highlighting the key role of particle size in determining the atmospheric oxidation reactivity of PPDs. Model simulations reveal a size-dependent pattern for the estimated concentration of particulate PPD-Qs in human body. In addition, we also demonstrate that PPD-Qs can induce the formation of cellular reactive oxygen species, suggesting that they may pose risks to human health. Overall, our results emphasize the importance of considering the particle size effect when evaluating the reaction potential and exposure risk of airborne PPD-Qs.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"197 ","pages":"Article 109329"},"PeriodicalIF":10.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412025000807","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transformed from p-phenylenediamines (PPDs) antioxidant, PPD-derived quinones (PPD-Qs) have recently been recognized as emerging contaminants due to their potential negative impacts on the environment and human health. While there have been measurements of airborne PPD-Qs, the size distribution of PPD-Qs and the impact of particle size on PPD transformation chemistry remain largely unknown. Here, through the measurements of atmospheric particles in three megacities in China (Beijing, Xi’an, and Hefei), we find that PPD-Qs are widely distributed in these cities. Further analysis of the size-fractioned particles in Hefei indicates that 48 % of PPD-Qs reside in coarse particles. Given that previous studies mainly focus on the measurement of PPD-Qs in fine particles, the previously reported PPD-Q concentrations and the corresponding human exposure dosages are likely to be significantly underestimated. Furthermore, the ratio of PPD-Q to PPD concentration (PPD-Q/PPD) for particles with size range of 0.056 − 0.1 μm is up to 3 times higher than that with size range of 10 − 18 μm, highlighting the key role of particle size in determining the atmospheric oxidation reactivity of PPDs. Model simulations reveal a size-dependent pattern for the estimated concentration of particulate PPD-Qs in human body. In addition, we also demonstrate that PPD-Qs can induce the formation of cellular reactive oxygen species, suggesting that they may pose risks to human health. Overall, our results emphasize the importance of considering the particle size effect when evaluating the reaction potential and exposure risk of airborne PPD-Qs.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.