Yijin Zeng, Quan Lu, Chunlin Li, Aichun Dou, Yu Zhou, Mingru Su, Panpan Zhang, Yunjian Liu
{"title":"Synthesis of porous carbon Na4Fe3(PO4)2P2O7@C by sol-gel method as a high-rate cathode for sodium-ion batteries","authors":"Yijin Zeng, Quan Lu, Chunlin Li, Aichun Dou, Yu Zhou, Mingru Su, Panpan Zhang, Yunjian Liu","doi":"10.1016/j.electacta.2025.145871","DOIUrl":null,"url":null,"abstract":"<div><div>Na<sub>4</sub>Fe<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>P<sub>2</sub>O<sub>7</sub>@C (NFPP) has attracted widespread attention from researchers due to its excellent structural stability, low cost, and non-toxic nature, making it one of the most promising energy storage materials for the future. The inherently poor electrical conductivity of NFPP, its actual specific capacity (around 100 mAh g<sup>−1</sup>) is often lower than its theoretical capacity (129 mAh g<sup>−1</sup>), which has been a key issue of concern for researchers. In this study, we adopted a mixed enhancement approach, where polyvinyl alcohol (PVA) and a carbon source were appropriately combined. The PVA uniformly adhered to the surface, and during high-temperature pyrolysis, its decomposition resulted in the formation of carbon layers with pores, creating a porous carbon framework network. The presence of a porous carbon framework allows for sufficient electrolyte infiltration, significantly increasing the reaction surface area. As a result, we successfully synthesized NFPP<em>x</em> (with some PVA added) material with a porous carbon framework network. The surface of NFPP<em>x</em> was coated by a porous carbon layer, which provides the provision of a rapid conductive network and abundant sodium-ion transport pathways. NFPP2 exhibits excellent electrochemical performance, with an outstanding reversible specific capacity of 118 mAh g<sup>−1</sup> at 0.1C, which corresponds to 91.5% of its theoretical capacity. Additionally, NFPP2 demonstrates remarkable long-term cycling stability and excellent rate performance. After 6,000 cycles at 20C, it retains 90.6% of its capacity with a reversible specific capacity of 78 mAh g<sup>−1</sup>. Even at a high current rate of 40C, NFPP2 achieves a specific capacity of 69 mAh g<sup>−1</sup>. This simple method of mixing and enhancing materials has significantly advanced the development of sodium-ion batteries, providing a promising pathway for the future production of porous carbon framework materials.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"520 ","pages":"Article 145871"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625002348","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Na4Fe3(PO4)2P2O7@C (NFPP) has attracted widespread attention from researchers due to its excellent structural stability, low cost, and non-toxic nature, making it one of the most promising energy storage materials for the future. The inherently poor electrical conductivity of NFPP, its actual specific capacity (around 100 mAh g−1) is often lower than its theoretical capacity (129 mAh g−1), which has been a key issue of concern for researchers. In this study, we adopted a mixed enhancement approach, where polyvinyl alcohol (PVA) and a carbon source were appropriately combined. The PVA uniformly adhered to the surface, and during high-temperature pyrolysis, its decomposition resulted in the formation of carbon layers with pores, creating a porous carbon framework network. The presence of a porous carbon framework allows for sufficient electrolyte infiltration, significantly increasing the reaction surface area. As a result, we successfully synthesized NFPPx (with some PVA added) material with a porous carbon framework network. The surface of NFPPx was coated by a porous carbon layer, which provides the provision of a rapid conductive network and abundant sodium-ion transport pathways. NFPP2 exhibits excellent electrochemical performance, with an outstanding reversible specific capacity of 118 mAh g−1 at 0.1C, which corresponds to 91.5% of its theoretical capacity. Additionally, NFPP2 demonstrates remarkable long-term cycling stability and excellent rate performance. After 6,000 cycles at 20C, it retains 90.6% of its capacity with a reversible specific capacity of 78 mAh g−1. Even at a high current rate of 40C, NFPP2 achieves a specific capacity of 69 mAh g−1. This simple method of mixing and enhancing materials has significantly advanced the development of sodium-ion batteries, providing a promising pathway for the future production of porous carbon framework materials.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.