Robust filling of extra-long gaps in eddy covariance CO2 flux measurements from a temperate deciduous forest using eXtreme Gradient Boosting

IF 5.6 1区 农林科学 Q1 AGRONOMY
Yujie Liu , Benjamin Lucas , Darby D. Bergl , Andrew D. Richardson
{"title":"Robust filling of extra-long gaps in eddy covariance CO2 flux measurements from a temperate deciduous forest using eXtreme Gradient Boosting","authors":"Yujie Liu ,&nbsp;Benjamin Lucas ,&nbsp;Darby D. Bergl ,&nbsp;Andrew D. Richardson","doi":"10.1016/j.agrformet.2025.110438","DOIUrl":null,"url":null,"abstract":"<div><div>Eddy Covariance measurements are often subject to missing values, or gaps in the data record. Methods to fill short gaps are well-established, but robustly filling gaps longer than a few weeks remains a challenge. Marginal Distribution Sampling (MDS) is a standard gap-filling method, but its effectiveness for long gaps (&gt; 30 days) is limited. We compared the performance of a machine learning algorithm, eXtreme Gradient Boosting (XGB) against MDS, using various artificial scenarios of gap lengths and locations. We gapfilled half hourly CO<sub>2</sub> flux from a temperate deciduous forest, Bartlett Experimental Forest, from 2010 to 2022. Whereas the standard implementation of MDS uses a narrowly-prescribed set of predictor variables, with XGB we were able to include additional variables. The Green Chromatic Coordinate (GCC), derived from PhenoCam imagery, and diffuse photosynthetic photon flux density, emerged as two of the three most important predictor variables. Compared to MDS, the root mean square error (RMSE) of XGB decreased by 9.5 %, and the R<sup>2</sup> increased by 2.7 % in a randomized 10-fold cross validation test. XGB outperformed MDS for both day and night times across different seasons. But annual NEE integrals varied across methods, with weaker annual net carbon uptake, by -110 ± 74 g C m<sup>-2</sup> y<sup>-1</sup> for XGB compared to MDS (214 ± 11 g C m<sup>-2</sup> yr<sup>-1</sup>). In artificial gap experiments, when trained using the 13-year data record, XGB reliably filled gaps, showing little change in RMSE for gaps up to 240 days. In contrast, the performance of MDS steadily decreased as gap lengths increased. MDS was unable to fill gaps longer than 2 months. In summary, XGB demonstrates excellent performance as an alternative method to MDS, providing reliable predictions for temperate deciduous forest carbon fluxes under different gap lengths and location scenarios. Implementation of XGB is facilitated by easy-to-use packages.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"364 ","pages":"Article 110438"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000589","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Eddy Covariance measurements are often subject to missing values, or gaps in the data record. Methods to fill short gaps are well-established, but robustly filling gaps longer than a few weeks remains a challenge. Marginal Distribution Sampling (MDS) is a standard gap-filling method, but its effectiveness for long gaps (> 30 days) is limited. We compared the performance of a machine learning algorithm, eXtreme Gradient Boosting (XGB) against MDS, using various artificial scenarios of gap lengths and locations. We gapfilled half hourly CO2 flux from a temperate deciduous forest, Bartlett Experimental Forest, from 2010 to 2022. Whereas the standard implementation of MDS uses a narrowly-prescribed set of predictor variables, with XGB we were able to include additional variables. The Green Chromatic Coordinate (GCC), derived from PhenoCam imagery, and diffuse photosynthetic photon flux density, emerged as two of the three most important predictor variables. Compared to MDS, the root mean square error (RMSE) of XGB decreased by 9.5 %, and the R2 increased by 2.7 % in a randomized 10-fold cross validation test. XGB outperformed MDS for both day and night times across different seasons. But annual NEE integrals varied across methods, with weaker annual net carbon uptake, by -110 ± 74 g C m-2 y-1 for XGB compared to MDS (214 ± 11 g C m-2 yr-1). In artificial gap experiments, when trained using the 13-year data record, XGB reliably filled gaps, showing little change in RMSE for gaps up to 240 days. In contrast, the performance of MDS steadily decreased as gap lengths increased. MDS was unable to fill gaps longer than 2 months. In summary, XGB demonstrates excellent performance as an alternative method to MDS, providing reliable predictions for temperate deciduous forest carbon fluxes under different gap lengths and location scenarios. Implementation of XGB is facilitated by easy-to-use packages.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信