Significantly Enhancing the Energy-Storage Properties of Polypropylene Films by Physically Manipulating Their Permittivity and Crystalline Behavior with Polar Organic Molecules
Dong Ma, Jingchun Hou, Guanxiang Zhang, Sen Meng, Runze Zhang, Jie Xiong, Weichen He, Xiao Zhang, Meirong Zhang, Zhicheng Zhang
{"title":"Significantly Enhancing the Energy-Storage Properties of Polypropylene Films by Physically Manipulating Their Permittivity and Crystalline Behavior with Polar Organic Molecules","authors":"Dong Ma, Jingchun Hou, Guanxiang Zhang, Sen Meng, Runze Zhang, Jie Xiong, Weichen He, Xiao Zhang, Meirong Zhang, Zhicheng Zhang","doi":"10.1002/adfm.202418631","DOIUrl":null,"url":null,"abstract":"To meet the increasing demands of modern power electronics for high-temperature resistance and energy storage performance and avoid the trade-off between high energy storage (<i>U</i><sub>e</sub>) performance and prominent processability, a strategy to modify polypropylene (PP) by introducing polar electron-deficient 8-hydroxyquinoline (8-HQ) physically during melt extrusion granulation is proposed. 8-HQ molecules are initially designed to capture charges injected under a high electric field and depress the leakage current density. Unexpectedly, they are found to reside at PP grain boundaries, promoting grain growth and thereby enhancing PP films' mechanical strength. Both effects may address the enhanced breakdown strength (<i>E</i><sub>b</sub>) up to 814 MV m<sup>−1</sup>. Besides, 8-HQ increases the permittivity of modified PP films. Due to simultaneously enhanced <i>E</i><sub>b</sub> and dielectric constant, an impressive <i>U</i><sub>e</sub> of 9.87 J cm<sup>−</sup><sup>3</sup> with a discharge efficiency above 90% is obtained in the optimal sample, and an <i>U</i><sub>e</sub> of 6.96 J cm<sup>−</sup><sup>3</sup> at 83% efficiency is well retained up to 125 °C, far exceeding the previously reported results. This study offers a novel strategy to modify PP film physically by manipulating its crystalline behavior for high-pulse energy storage capacitor applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"56 35 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418631","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the increasing demands of modern power electronics for high-temperature resistance and energy storage performance and avoid the trade-off between high energy storage (Ue) performance and prominent processability, a strategy to modify polypropylene (PP) by introducing polar electron-deficient 8-hydroxyquinoline (8-HQ) physically during melt extrusion granulation is proposed. 8-HQ molecules are initially designed to capture charges injected under a high electric field and depress the leakage current density. Unexpectedly, they are found to reside at PP grain boundaries, promoting grain growth and thereby enhancing PP films' mechanical strength. Both effects may address the enhanced breakdown strength (Eb) up to 814 MV m−1. Besides, 8-HQ increases the permittivity of modified PP films. Due to simultaneously enhanced Eb and dielectric constant, an impressive Ue of 9.87 J cm−3 with a discharge efficiency above 90% is obtained in the optimal sample, and an Ue of 6.96 J cm−3 at 83% efficiency is well retained up to 125 °C, far exceeding the previously reported results. This study offers a novel strategy to modify PP film physically by manipulating its crystalline behavior for high-pulse energy storage capacitor applications.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.