A Dual-Mode Anode-Free Zinc-Prussian Blue Electrochromic Device

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bingkun Huang, Bin Wang, Feifei Zhao, Haizeng Li, William W. Yu
{"title":"A Dual-Mode Anode-Free Zinc-Prussian Blue Electrochromic Device","authors":"Bingkun Huang, Bin Wang, Feifei Zhao, Haizeng Li, William W. Yu","doi":"10.1002/adfm.202423532","DOIUrl":null,"url":null,"abstract":"Conventional Prussian blue (PB)-based electrochromic devices (ECDs) suffer from a narrow light modulation range due to their single absorption band. Herein, an anode-free Zn-PB electrochromic device is reported, utilizing a platinum (Pt) layer-modified ITO glass (denoted as Pt/ITO glass) counter electrode with a hybrid electrolyte containing propylene carbonate (PC). This device compensated for the charge released or consumed during the bleaching/coloring process of the PB electrode (i.e., ion-insertion/extraction) through a reversible Zn electrodeposition occurring on the surface of the Pt/ITO glass. The Pt layer ensured a uniformly distributed electric field across the electrode surface, leading to uniform Zn deposition. Concurrently, PC molecules modified the solvation structures of ions, engendering uniform Zn deposition and suppressing the “ion trapping” effect of PB. Meanwhile, PC suppressed water activity by changing the H-bonding network of electrolytes, thereby limiting the formation of by-products, the occurrence of side reactions, and the destruction of the PB structure. As a result, the optimized anode-free Zn-PB ECDs demonstrated high transmittance modulation ability (60.3% at 700 nm) and exceptional cycling durability (71.7% capacity retention and 69.1% of its initial <i>ΔT</i> after 1000 cycles). Finally, a dual-mode electrochromic device is developed with five color states to expand the light modulation range.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"30 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202423532","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional Prussian blue (PB)-based electrochromic devices (ECDs) suffer from a narrow light modulation range due to their single absorption band. Herein, an anode-free Zn-PB electrochromic device is reported, utilizing a platinum (Pt) layer-modified ITO glass (denoted as Pt/ITO glass) counter electrode with a hybrid electrolyte containing propylene carbonate (PC). This device compensated for the charge released or consumed during the bleaching/coloring process of the PB electrode (i.e., ion-insertion/extraction) through a reversible Zn electrodeposition occurring on the surface of the Pt/ITO glass. The Pt layer ensured a uniformly distributed electric field across the electrode surface, leading to uniform Zn deposition. Concurrently, PC molecules modified the solvation structures of ions, engendering uniform Zn deposition and suppressing the “ion trapping” effect of PB. Meanwhile, PC suppressed water activity by changing the H-bonding network of electrolytes, thereby limiting the formation of by-products, the occurrence of side reactions, and the destruction of the PB structure. As a result, the optimized anode-free Zn-PB ECDs demonstrated high transmittance modulation ability (60.3% at 700 nm) and exceptional cycling durability (71.7% capacity retention and 69.1% of its initial ΔT after 1000 cycles). Finally, a dual-mode electrochromic device is developed with five color states to expand the light modulation range.

Abstract Image

双模无阳极锌普鲁士蓝电致变色装置
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信