Sehyeon Kim, San Kim, Jae-Young Kim, Tae-In Jeong, Munki Song, Seungchul Kim
{"title":"Polarization-independent narrowband photodetection with plasmon-induced thermoelectric effect in a hexagonal array of Au nanoholes","authors":"Sehyeon Kim, San Kim, Jae-Young Kim, Tae-In Jeong, Munki Song, Seungchul Kim","doi":"10.1515/nanoph-2024-0643","DOIUrl":null,"url":null,"abstract":"Photodetectors are crucial for modern technologies such as optical communications, imaging, autonomous vehicles, and machine vision. However, conventional semiconductor-based photodetectors require additional filtering systems due to their broad spectral response, leading to increased costs and complexity. Here, we present a narrow spectral response photodetector using hexagonally arranged plasmonic Au nanohole structures, eliminating the need for optical filters. The device achieves a full-width at half maximum (FWHM) bandwidth of ∼40 nm with a response peak at 760 nm and a linear photocurrent responsivity of 0.95 μA/W. The photothermoelectric effect, induced by the nonradiative decay of plasmonic resonance, converts optical radiation into an electric potential on the Au surface. The hexagonal nanohole design generates polarization-independent photocurrents and allows spectral tuning beyond the cutoff region of silicon photodetectors. This versatile approach enables customizable response characteristics across a broad wavelength range through geometric design, enhancing its potential for diverse applications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"9 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0643","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photodetectors are crucial for modern technologies such as optical communications, imaging, autonomous vehicles, and machine vision. However, conventional semiconductor-based photodetectors require additional filtering systems due to their broad spectral response, leading to increased costs and complexity. Here, we present a narrow spectral response photodetector using hexagonally arranged plasmonic Au nanohole structures, eliminating the need for optical filters. The device achieves a full-width at half maximum (FWHM) bandwidth of ∼40 nm with a response peak at 760 nm and a linear photocurrent responsivity of 0.95 μA/W. The photothermoelectric effect, induced by the nonradiative decay of plasmonic resonance, converts optical radiation into an electric potential on the Au surface. The hexagonal nanohole design generates polarization-independent photocurrents and allows spectral tuning beyond the cutoff region of silicon photodetectors. This versatile approach enables customizable response characteristics across a broad wavelength range through geometric design, enhancing its potential for diverse applications.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.