Nanophotonic device design based on large language models: multilayer and metasurface examples

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Myungjoon Kim, Hyeonjin Park, Jonghwa Shin
{"title":"Nanophotonic device design based on large language models: multilayer and metasurface examples","authors":"Myungjoon Kim, Hyeonjin Park, Jonghwa Shin","doi":"10.1515/nanoph-2024-0674","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) have gained significant prominence in language processing, demonstrating remarkable performance across a wide range of tasks. Recently, LLMs have been explored in various scientific fields beyond language-based tasks. However, their application in the design of nanophotonic devices remains less explored. Here, we investigate the capabilities of LLMs to address nanophotonic design problems without requiring domain-specific expertise of the user. Our findings show that an LLM with in-context learning enables nonexpert users to calculate optical responses of multilayer films via numerical simulations. Through conversational interaction and feedback between the LLM and the user, an optimal design of the multilayer films can be also produced for the user-provided target optical properties. Furthermore, we fine-tune the LLM using text-based representations of the structure and properties of optical metasurfaces. We demonstrate that the fine-tuned LLM can generate metasurface designs with target properties by reversing the input and output text. This research highlights the potential of LLMs to expedite the nanophotonic design process and to make it more accessible to a wider audience.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"90 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0674","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have gained significant prominence in language processing, demonstrating remarkable performance across a wide range of tasks. Recently, LLMs have been explored in various scientific fields beyond language-based tasks. However, their application in the design of nanophotonic devices remains less explored. Here, we investigate the capabilities of LLMs to address nanophotonic design problems without requiring domain-specific expertise of the user. Our findings show that an LLM with in-context learning enables nonexpert users to calculate optical responses of multilayer films via numerical simulations. Through conversational interaction and feedback between the LLM and the user, an optimal design of the multilayer films can be also produced for the user-provided target optical properties. Furthermore, we fine-tune the LLM using text-based representations of the structure and properties of optical metasurfaces. We demonstrate that the fine-tuned LLM can generate metasurface designs with target properties by reversing the input and output text. This research highlights the potential of LLMs to expedite the nanophotonic design process and to make it more accessible to a wider audience.
大型语言模型(LLMs)在语言处理领域的地位日益突出,在各种任务中表现出卓越的性能。最近,除了基于语言的任务之外,LLMs 还在多个科学领域进行了探索。然而,它们在纳米光子器件设计中的应用仍鲜有人问津。在此,我们研究了 LLM 在无需用户特定领域专业知识的情况下解决纳米光子设计问题的能力。我们的研究结果表明,具有情境学习功能的 LLM 能够让非专业用户通过数值模拟计算多层薄膜的光学响应。通过 LLM 与用户之间的对话互动和反馈,还能根据用户提供的目标光学特性生成多层薄膜的最佳设计。此外,我们还利用基于文本的光学元表面结构和特性表述对 LLM 进行了微调。我们证明,微调后的 LLM 可以通过反转输入和输出文本生成具有目标特性的元表面设计。这项研究凸显了 LLM 在加快纳米光子设计过程以及让更多人了解它的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信