Dynamic Interactions of Titanium Dioxide Nano-Pollutants with a Lung Surfactant Model: A Nonlinear Interfacial Rheology Study

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Farzaneh Hajirasouliha, Daniela Placha, Yong-Qing Fu, Dominika Zabiegaj
{"title":"Dynamic Interactions of Titanium Dioxide Nano-Pollutants with a Lung Surfactant Model: A Nonlinear Interfacial Rheology Study","authors":"Farzaneh Hajirasouliha, Daniela Placha, Yong-Qing Fu, Dominika Zabiegaj","doi":"10.1016/j.jhazmat.2025.137614","DOIUrl":null,"url":null,"abstract":"TiO<sub>2</sub> nanoparticles are highly produced nanomaterials from industry and commonly found in the air we breathe, but their interactions with lung surfactants and impairing lung functions have not well understood. In this study, effects of two crystalline structures of TiO<sub>2</sub> nanoparticles, i.e., anatase and rutile, with their various sizes, shapes, surface charges and concentrations, interacting with a single-component model of pulmonary surfactant, were studied. Nonlinear interfacial rheology was used to quantitatively distinguish effects of nanoparticles at different stages of breathing cycles. Oscillation studies which simulated the breathing cycles in different human ages showed that both crystalline structures of TiO<sub>2</sub> nanoparticles made nanoparticles-dipalmitoyl phosphatidylcholine (DPPC) system more viscous, dissipative and irreversible during the oscillations, thus affecting the normal operation of lung surfactant. At the least concentration of nanoparticles studied, i.e., 0.01<!-- --> <!-- -->wt %, the anatase ones significantly affected the expansion part of the cycle, whereas the rutile ones affected both expansion and compression phases. Interactions between DPPC and TiO<sub>2</sub> nanoparticles under dynamic conditions of breathing cycles were affected by the crystalline structures and concentrations of nanoparticles and breathing conditions, with key factors including physical properties, such as sizes, shapes, and zeta potentials of nanoparticles. These results are crucial for understanding the adverse effects of nanosized pollutants in the lungs and applying drug delivery into lungs.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"78 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137614","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2 nanoparticles are highly produced nanomaterials from industry and commonly found in the air we breathe, but their interactions with lung surfactants and impairing lung functions have not well understood. In this study, effects of two crystalline structures of TiO2 nanoparticles, i.e., anatase and rutile, with their various sizes, shapes, surface charges and concentrations, interacting with a single-component model of pulmonary surfactant, were studied. Nonlinear interfacial rheology was used to quantitatively distinguish effects of nanoparticles at different stages of breathing cycles. Oscillation studies which simulated the breathing cycles in different human ages showed that both crystalline structures of TiO2 nanoparticles made nanoparticles-dipalmitoyl phosphatidylcholine (DPPC) system more viscous, dissipative and irreversible during the oscillations, thus affecting the normal operation of lung surfactant. At the least concentration of nanoparticles studied, i.e., 0.01 wt %, the anatase ones significantly affected the expansion part of the cycle, whereas the rutile ones affected both expansion and compression phases. Interactions between DPPC and TiO2 nanoparticles under dynamic conditions of breathing cycles were affected by the crystalline structures and concentrations of nanoparticles and breathing conditions, with key factors including physical properties, such as sizes, shapes, and zeta potentials of nanoparticles. These results are crucial for understanding the adverse effects of nanosized pollutants in the lungs and applying drug delivery into lungs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信