First-principles modeling of passivation behaviors of stainless steels in corrosive environments

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenjing Xu, Ergen Bao, Yueqi Si, Hui Ma, Peitao Liu, Yan Sun, Yongpeng Shi, Xing-Qiu Chen
{"title":"First-principles modeling of passivation behaviors of stainless steels in corrosive environments","authors":"Wenjing Xu, Ergen Bao, Yueqi Si, Hui Ma, Peitao Liu, Yan Sun, Yongpeng Shi, Xing-Qiu Chen","doi":"10.1016/j.jmst.2024.11.082","DOIUrl":null,"url":null,"abstract":"Accurately determining the Flade potential (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;E&lt;/mi&gt;&lt;mtext is=\"true\"&gt;Flade&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2559.2 999.8\" width=\"5.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use><use transform=\"scale(0.707)\" x=\"653\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"932\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1432\" xlink:href=\"#MJMAIN-64\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1989\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></script></span>) is of significant importance in the design of novel corrosion-resisting alloys. However, due to the complex nature of the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;E&lt;/mi&gt;&lt;mtext is=\"true\"&gt;Flade&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2559.2 999.8\" width=\"5.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use><use transform=\"scale(0.707)\" x=\"653\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"932\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1432\" xlink:href=\"#MJMAIN-64\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1989\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></script></span> influenced by several factors including compositions of the alloys and corrosive solutions, there is currently a lack of truly predictive <em>ab initio</em> model. Here, we established the critical potential condition required for passivation in acidic solutions containing chloride ions (Cl<em><sup>−</sup></em>) by developing an <em>ab initio</em> model that incorporates the potential drop from the metal electrode to the solution, considering tunneling of electrons at metal/film interface, breakdown of the film, and electrochemical adsorption reactions at film/solution interface. These parameters were derived from the work function of the alloy substrate and passivation film, the band gap of the passivation film, and the Gibbs free energy of adsorption on the passivation film, all of which can be obtainable from first-principles calculations. This theoretical model has been successfully validated for alloyed stainless steel, exhibiting a remarkable agreement with experimental results. Importantly, enabled by the model, we have identified several alloying elements (i.e., Ta, W, Os, and Ir) that can effectively lower the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;E&lt;/mi&gt;&lt;mtext is=\"true\"&gt;Flade&lt;/mtext&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2559.2 999.8\" width=\"5.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use><use transform=\"scale(0.707)\" x=\"653\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"932\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1432\" xlink:href=\"#MJMAIN-64\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1989\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></script></span> of the stainless steel. This work constitutes an important step forward in modeling complex passivation behaviors from first-principles, providing a useful tool for the design of corrosion-resisting alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"34 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.082","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately determining the Flade potential (EFlade) is of significant importance in the design of novel corrosion-resisting alloys. However, due to the complex nature of the EFlade influenced by several factors including compositions of the alloys and corrosive solutions, there is currently a lack of truly predictive ab initio model. Here, we established the critical potential condition required for passivation in acidic solutions containing chloride ions (Cl) by developing an ab initio model that incorporates the potential drop from the metal electrode to the solution, considering tunneling of electrons at metal/film interface, breakdown of the film, and electrochemical adsorption reactions at film/solution interface. These parameters were derived from the work function of the alloy substrate and passivation film, the band gap of the passivation film, and the Gibbs free energy of adsorption on the passivation film, all of which can be obtainable from first-principles calculations. This theoretical model has been successfully validated for alloyed stainless steel, exhibiting a remarkable agreement with experimental results. Importantly, enabled by the model, we have identified several alloying elements (i.e., Ta, W, Os, and Ir) that can effectively lower the EFlade of the stainless steel. This work constitutes an important step forward in modeling complex passivation behaviors from first-principles, providing a useful tool for the design of corrosion-resisting alloys.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信