{"title":"First-principles modeling of passivation behaviors of stainless steels in corrosive environments","authors":"Wenjing Xu, Ergen Bao, Yueqi Si, Hui Ma, Peitao Liu, Yan Sun, Yongpeng Shi, Xing-Qiu Chen","doi":"10.1016/j.jmst.2024.11.082","DOIUrl":null,"url":null,"abstract":"Accurately determining the Flade potential (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2559.2 999.8\" width=\"5.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use><use transform=\"scale(0.707)\" x=\"653\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"932\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1432\" xlink:href=\"#MJMAIN-64\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1989\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></script></span>) is of significant importance in the design of novel corrosion-resisting alloys. However, due to the complex nature of the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2559.2 999.8\" width=\"5.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use><use transform=\"scale(0.707)\" x=\"653\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"932\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1432\" xlink:href=\"#MJMAIN-64\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1989\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></script></span> influenced by several factors including compositions of the alloys and corrosive solutions, there is currently a lack of truly predictive <em>ab initio</em> model. Here, we established the critical potential condition required for passivation in acidic solutions containing chloride ions (Cl<em><sup>−</sup></em>) by developing an <em>ab initio</em> model that incorporates the potential drop from the metal electrode to the solution, considering tunneling of electrons at metal/film interface, breakdown of the film, and electrochemical adsorption reactions at film/solution interface. These parameters were derived from the work function of the alloy substrate and passivation film, the band gap of the passivation film, and the Gibbs free energy of adsorption on the passivation film, all of which can be obtainable from first-principles calculations. This theoretical model has been successfully validated for alloyed stainless steel, exhibiting a remarkable agreement with experimental results. Importantly, enabled by the model, we have identified several alloying elements (i.e., Ta, W, Os, and Ir) that can effectively lower the <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.322ex\" role=\"img\" style=\"vertical-align: -0.549ex;\" viewbox=\"0 -763.5 2559.2 999.8\" width=\"5.944ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-45\"></use></g><g is=\"true\" transform=\"translate(738,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-46\"></use><use transform=\"scale(0.707)\" x=\"653\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"932\" xlink:href=\"#MJMAIN-61\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1432\" xlink:href=\"#MJMAIN-64\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1989\" xlink:href=\"#MJMAIN-65\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">E</mi><mtext is=\"true\">Flade</mtext></msub></math></script></span> of the stainless steel. This work constitutes an important step forward in modeling complex passivation behaviors from first-principles, providing a useful tool for the design of corrosion-resisting alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"34 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.11.082","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately determining the Flade potential () is of significant importance in the design of novel corrosion-resisting alloys. However, due to the complex nature of the influenced by several factors including compositions of the alloys and corrosive solutions, there is currently a lack of truly predictive ab initio model. Here, we established the critical potential condition required for passivation in acidic solutions containing chloride ions (Cl−) by developing an ab initio model that incorporates the potential drop from the metal electrode to the solution, considering tunneling of electrons at metal/film interface, breakdown of the film, and electrochemical adsorption reactions at film/solution interface. These parameters were derived from the work function of the alloy substrate and passivation film, the band gap of the passivation film, and the Gibbs free energy of adsorption on the passivation film, all of which can be obtainable from first-principles calculations. This theoretical model has been successfully validated for alloyed stainless steel, exhibiting a remarkable agreement with experimental results. Importantly, enabled by the model, we have identified several alloying elements (i.e., Ta, W, Os, and Ir) that can effectively lower the of the stainless steel. This work constitutes an important step forward in modeling complex passivation behaviors from first-principles, providing a useful tool for the design of corrosion-resisting alloys.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.