Adiabatic Index in Fluid Models of Collisionless Black Hole Accretion

Charles F. Gammie
{"title":"Adiabatic Index in Fluid Models of Collisionless Black Hole Accretion","authors":"Charles F. Gammie","doi":"10.3847/1538-4357/adaea3","DOIUrl":null,"url":null,"abstract":"Models of highly sub-Eddington accretion onto black holes commonly use a single-fluid model for the collisionless, near-horizon plasma. These models must specify an equation of state. It is common to use an ideal gas with <italic toggle=\"yes\">p</italic> = (<italic toggle=\"yes\">γ</italic> − 1)<italic toggle=\"yes\">u</italic> and <italic toggle=\"yes\">γ</italic> = 4/3, 13/9, or 5/3, but these produce significantly different outcomes. We discuss the origins of this discrepancy and the assumptions underlying the single-fluid model. The main result of this investigation is that under conditions relevant to low-luminosity black hole accretion the best choice of single-fluid adiabatic index is close to but slightly less than 5/3. Along the way we provide a simple equilibrium model for the relation between the ion-to-electron dissipation ratio and the ion-to-electron temperature ratio, and explore the implications for electron temperature fluctuations in Event Horizon Telescope sources.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/adaea3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Models of highly sub-Eddington accretion onto black holes commonly use a single-fluid model for the collisionless, near-horizon plasma. These models must specify an equation of state. It is common to use an ideal gas with p = (γ − 1)u and γ = 4/3, 13/9, or 5/3, but these produce significantly different outcomes. We discuss the origins of this discrepancy and the assumptions underlying the single-fluid model. The main result of this investigation is that under conditions relevant to low-luminosity black hole accretion the best choice of single-fluid adiabatic index is close to but slightly less than 5/3. Along the way we provide a simple equilibrium model for the relation between the ion-to-electron dissipation ratio and the ion-to-electron temperature ratio, and explore the implications for electron temperature fluctuations in Event Horizon Telescope sources.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信