UNCOVERing the Faint End of the z ∼ 7 [O iii] Luminosity Function with JWST’s F410M Medium Bandpass Filter

Isak G. B. Wold, Sangeeta Malhotra, James E. Rhoads, John R. Weaver, Bingjie Wang
{"title":"UNCOVERing the Faint End of the z ∼ 7 [O iii] Luminosity Function with JWST’s F410M Medium Bandpass Filter","authors":"Isak G. B. Wold, Sangeeta Malhotra, James E. Rhoads, John R. Weaver, Bingjie Wang","doi":"10.3847/1538-4357/ada8a6","DOIUrl":null,"url":null,"abstract":"Strong emission from doubly ionized oxygen is a beacon for some of the most intensely star-forming galaxies. JWST enables the search for this beacon in the early Universe with unprecedented sensitivity. Using UNCOVER DR1 JWST/NIRCam and Hubble Space Telescope (HST) imaging data of A2744, we identify strong (rest-frame EW &gt; 500Å) [O <sc>iii</sc>]<sub>5008</sub> emitters at <italic toggle=\"yes\">z</italic> ∼ 7 based on excess F410M flux. We find <italic toggle=\"yes\">N</italic> = 68 <italic toggle=\"yes\">z</italic> ∼ 7 [O <sc>iii</sc>] candidates, including <italic toggle=\"yes\">N</italic> = 33 with deep HST coverage required to rule out lower-redshift interlopers (13.68 arcmin<sup>2</sup> with F814W 5<italic toggle=\"yes\">σ</italic> depth &gt;28 AB). Such strong emission lines can produce very red colors often misinterpreted as evidence for old, massive stellar populations, but are shown to be emission lines where we have spectra. Using this deep HST sample, we derive a new [O <sc>iii</sc>] luminosity function (LF) spanning <inline-formula>\n<tex-math>\n<?CDATA $41.1\\lt {{\\rm{log}}}_{10}(L/{{\\rm{erg}}\\,{\\rm{s}}}^{-1})\\lt 42.4$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>41.1</mml:mn><mml:mo>&lt;</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">erg</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi mathvariant=\"normal\">s</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>&lt;</mml:mo><mml:mn>42.4</mml:mn></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn1.gif\"></inline-graphic>\n</inline-formula>, an order of magnitude deeper than previous <italic toggle=\"yes\">z</italic> ∼ 6 studies. This LF is fit by a power law with a faint-end slope of <inline-formula>\n<tex-math>\n<?CDATA $\\alpha =-2.0{7}_{-0.23}^{+0.22}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>2.0</mml:mn><mml:msubsup><mml:mrow><mml:mn>7</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.23</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.22</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn2.gif\"></inline-graphic>\n</inline-formula>. Our results are consistent with the <italic toggle=\"yes\">z</italic> ∼ 7 FRESCO [O <sc>iii</sc>] LF across the overlapping 0.5 dex range, <inline-formula>\n<tex-math>\n<?CDATA $41.9\\gt {{\\rm{log}}}_{10}(L/{{\\rm{erg}}\\,{\\rm{s}}}^{-1})\\gt 42.4$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>41.9</mml:mn><mml:mo>&gt;</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">erg</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi mathvariant=\"normal\">s</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>&gt;</mml:mo><mml:mn>42.4</mml:mn></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn3.gif\"></inline-graphic>\n</inline-formula>. Combining both data sets, we construct an LF spanning 2 dex in luminosity, with a best-fit Schechter function: <inline-formula>\n<tex-math>\n<?CDATA $\\alpha =-2.1{3}_{-0.16}^{+0.15}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>2.1</mml:mn><mml:msubsup><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.16</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn4.gif\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{log}}}_{10}({\\phi }^{* }/{{\\rm{Mpc}}}^{-3})=-4.1{7}_{-1.39}^{+0.49}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">Mpc</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>4.1</mml:mn><mml:msubsup><mml:mrow><mml:mn>7</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1.39</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.49</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn5.gif\"></inline-graphic>\n</inline-formula>, and <inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{log}}}_{10}({L}^{* }/$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo>/</mml:mo></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn6.gif\"></inline-graphic>\n</inline-formula>erg s<inline-formula>\n<tex-math>\n<?CDATA ${}^{-1})=43.0{6}_{-0.29}^{+0.90}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>43.0</mml:mn><mml:msubsup><mml:mrow><mml:mn>6</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.29</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.90</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn7.gif\"></inline-graphic>\n</inline-formula>. There is little evolution between this LF and published [O <sc>iii</sc>] LFs at 3 &lt; <italic toggle=\"yes\">z</italic> &lt; 8, and no evidence of a turnover at faint luminosities. The sizes of these extreme [O <sc>iii</sc>] emitters are similar to their low redshift counterparts, the Green Peas. The <italic toggle=\"yes\">z</italic> ∼ 7 [O <sc>iii</sc>] LF aligns with the Ly<italic toggle=\"yes\">α</italic> LF at the bright end, suggesting many of these galaxies are also Ly<italic toggle=\"yes\">α</italic> emitters.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ada8a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Strong emission from doubly ionized oxygen is a beacon for some of the most intensely star-forming galaxies. JWST enables the search for this beacon in the early Universe with unprecedented sensitivity. Using UNCOVER DR1 JWST/NIRCam and Hubble Space Telescope (HST) imaging data of A2744, we identify strong (rest-frame EW > 500Å) [O iii]5008 emitters at z ∼ 7 based on excess F410M flux. We find N = 68 z ∼ 7 [O iii] candidates, including N = 33 with deep HST coverage required to rule out lower-redshift interlopers (13.68 arcmin2 with F814W 5σ depth >28 AB). Such strong emission lines can produce very red colors often misinterpreted as evidence for old, massive stellar populations, but are shown to be emission lines where we have spectra. Using this deep HST sample, we derive a new [O iii] luminosity function (LF) spanning 41.1<log10(L/ergs1)<42.4 , an order of magnitude deeper than previous z ∼ 6 studies. This LF is fit by a power law with a faint-end slope of α=2.070.23+0.22 . Our results are consistent with the z ∼ 7 FRESCO [O iii] LF across the overlapping 0.5 dex range, 41.9>log10(L/ergs1)>42.4 . Combining both data sets, we construct an LF spanning 2 dex in luminosity, with a best-fit Schechter function: α=2.130.16+0.15 , log10(ϕ*/Mpc3)=4.171.39+0.49 , and log10(L*/ erg s 1)=43.060.29+0.90 . There is little evolution between this LF and published [O iii] LFs at 3 < z < 8, and no evidence of a turnover at faint luminosities. The sizes of these extreme [O iii] emitters are similar to their low redshift counterparts, the Green Peas. The z ∼ 7 [O iii] LF aligns with the Lyα LF at the bright end, suggesting many of these galaxies are also Lyα emitters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信