Isak G. B. Wold, Sangeeta Malhotra, James E. Rhoads, John R. Weaver, Bingjie Wang
{"title":"UNCOVERing the Faint End of the z ∼ 7 [O iii] Luminosity Function with JWST’s F410M Medium Bandpass Filter","authors":"Isak G. B. Wold, Sangeeta Malhotra, James E. Rhoads, John R. Weaver, Bingjie Wang","doi":"10.3847/1538-4357/ada8a6","DOIUrl":null,"url":null,"abstract":"Strong emission from doubly ionized oxygen is a beacon for some of the most intensely star-forming galaxies. JWST enables the search for this beacon in the early Universe with unprecedented sensitivity. Using UNCOVER DR1 JWST/NIRCam and Hubble Space Telescope (HST) imaging data of A2744, we identify strong (rest-frame EW > 500Å) [O <sc>iii</sc>]<sub>5008</sub> emitters at <italic toggle=\"yes\">z</italic> ∼ 7 based on excess F410M flux. We find <italic toggle=\"yes\">N</italic> = 68 <italic toggle=\"yes\">z</italic> ∼ 7 [O <sc>iii</sc>] candidates, including <italic toggle=\"yes\">N</italic> = 33 with deep HST coverage required to rule out lower-redshift interlopers (13.68 arcmin<sup>2</sup> with F814W 5<italic toggle=\"yes\">σ</italic> depth >28 AB). Such strong emission lines can produce very red colors often misinterpreted as evidence for old, massive stellar populations, but are shown to be emission lines where we have spectra. Using this deep HST sample, we derive a new [O <sc>iii</sc>] luminosity function (LF) spanning <inline-formula>\n<tex-math>\n<?CDATA $41.1\\lt {{\\rm{log}}}_{10}(L/{{\\rm{erg}}\\,{\\rm{s}}}^{-1})\\lt 42.4$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>41.1</mml:mn><mml:mo><</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">erg</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi mathvariant=\"normal\">s</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo><</mml:mo><mml:mn>42.4</mml:mn></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn1.gif\"></inline-graphic>\n</inline-formula>, an order of magnitude deeper than previous <italic toggle=\"yes\">z</italic> ∼ 6 studies. This LF is fit by a power law with a faint-end slope of <inline-formula>\n<tex-math>\n<?CDATA $\\alpha =-2.0{7}_{-0.23}^{+0.22}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>2.0</mml:mn><mml:msubsup><mml:mrow><mml:mn>7</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.23</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.22</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn2.gif\"></inline-graphic>\n</inline-formula>. Our results are consistent with the <italic toggle=\"yes\">z</italic> ∼ 7 FRESCO [O <sc>iii</sc>] LF across the overlapping 0.5 dex range, <inline-formula>\n<tex-math>\n<?CDATA $41.9\\gt {{\\rm{log}}}_{10}(L/{{\\rm{erg}}\\,{\\rm{s}}}^{-1})\\gt 42.4$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>41.9</mml:mn><mml:mo>></mml:mo><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>L</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">erg</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi mathvariant=\"normal\">s</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>></mml:mo><mml:mn>42.4</mml:mn></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn3.gif\"></inline-graphic>\n</inline-formula>. Combining both data sets, we construct an LF spanning 2 dex in luminosity, with a best-fit Schechter function: <inline-formula>\n<tex-math>\n<?CDATA $\\alpha =-2.1{3}_{-0.16}^{+0.15}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>2.1</mml:mn><mml:msubsup><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.16</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.15</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn4.gif\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{log}}}_{10}({\\phi }^{* }/{{\\rm{Mpc}}}^{-3})=-4.1{7}_{-1.39}^{+0.49}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">Mpc</mml:mi></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>4.1</mml:mn><mml:msubsup><mml:mrow><mml:mn>7</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1.39</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.49</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn5.gif\"></inline-graphic>\n</inline-formula>, and <inline-formula>\n<tex-math>\n<?CDATA ${{\\rm{log}}}_{10}({L}^{* }/$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">log</mml:mi></mml:mrow><mml:mrow><mml:mn>10</mml:mn></mml:mrow></mml:msub><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup><mml:mo>/</mml:mo></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn6.gif\"></inline-graphic>\n</inline-formula>erg s<inline-formula>\n<tex-math>\n<?CDATA ${}^{-1})=43.0{6}_{-0.29}^{+0.90}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>43.0</mml:mn><mml:msubsup><mml:mrow><mml:mn>6</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>0.29</mml:mn></mml:mrow><mml:mrow><mml:mo>+</mml:mo><mml:mn>0.90</mml:mn></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"apjada8a6ieqn7.gif\"></inline-graphic>\n</inline-formula>. There is little evolution between this LF and published [O <sc>iii</sc>] LFs at 3 < <italic toggle=\"yes\">z</italic> < 8, and no evidence of a turnover at faint luminosities. The sizes of these extreme [O <sc>iii</sc>] emitters are similar to their low redshift counterparts, the Green Peas. The <italic toggle=\"yes\">z</italic> ∼ 7 [O <sc>iii</sc>] LF aligns with the Ly<italic toggle=\"yes\">α</italic> LF at the bright end, suggesting many of these galaxies are also Ly<italic toggle=\"yes\">α</italic> emitters.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ada8a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Strong emission from doubly ionized oxygen is a beacon for some of the most intensely star-forming galaxies. JWST enables the search for this beacon in the early Universe with unprecedented sensitivity. Using UNCOVER DR1 JWST/NIRCam and Hubble Space Telescope (HST) imaging data of A2744, we identify strong (rest-frame EW > 500Å) [O iii]5008 emitters at z ∼ 7 based on excess F410M flux. We find N = 68 z ∼ 7 [O iii] candidates, including N = 33 with deep HST coverage required to rule out lower-redshift interlopers (13.68 arcmin2 with F814W 5σ depth >28 AB). Such strong emission lines can produce very red colors often misinterpreted as evidence for old, massive stellar populations, but are shown to be emission lines where we have spectra. Using this deep HST sample, we derive a new [O iii] luminosity function (LF) spanning 41.1<log10(L/ergs−1)<42.4, an order of magnitude deeper than previous z ∼ 6 studies. This LF is fit by a power law with a faint-end slope of α=−2.07−0.23+0.22. Our results are consistent with the z ∼ 7 FRESCO [O iii] LF across the overlapping 0.5 dex range, 41.9>log10(L/ergs−1)>42.4. Combining both data sets, we construct an LF spanning 2 dex in luminosity, with a best-fit Schechter function: α=−2.13−0.16+0.15, log10(ϕ*/Mpc−3)=−4.17−1.39+0.49, and log10(L*/erg s−1)=43.06−0.29+0.90. There is little evolution between this LF and published [O iii] LFs at 3 < z < 8, and no evidence of a turnover at faint luminosities. The sizes of these extreme [O iii] emitters are similar to their low redshift counterparts, the Green Peas. The z ∼ 7 [O iii] LF aligns with the Lyα LF at the bright end, suggesting many of these galaxies are also Lyα emitters.