{"title":"Carrier-envelope-phase-independent field sampling of single-cycle transients using homochromatic attosecond streaking.","authors":"H Y Kim, Z Pi, E Goulielmakis","doi":"10.1364/OL.543303","DOIUrl":null,"url":null,"abstract":"<p><p>The recent development of homochromatic attosecond streaking (HAS) has enabled a novel, highly precise method for ultrafast metrology of attosecond electron pulses as well as for real-time sampling of the instantaneous field waveforms of light transients. Here, we evaluate the potential of HAS as a method for precisely sampling the field waveform of non-phase-stabilized single-cycle transients of light. We show that the extreme nonlinearity of field emission and the core properties of HAS as a field sampling technique allow one to track the waveform of a single carrier-envelope phase (CEP) setting whose field dynamics results in the most energetic electron cutoff. Our results establish HAS as a robust, compact, all-solid-state method for characterizing light fields with attosecond-level precision and as a powerful tool in light field synthesis.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1093-1096"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.543303","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The recent development of homochromatic attosecond streaking (HAS) has enabled a novel, highly precise method for ultrafast metrology of attosecond electron pulses as well as for real-time sampling of the instantaneous field waveforms of light transients. Here, we evaluate the potential of HAS as a method for precisely sampling the field waveform of non-phase-stabilized single-cycle transients of light. We show that the extreme nonlinearity of field emission and the core properties of HAS as a field sampling technique allow one to track the waveform of a single carrier-envelope phase (CEP) setting whose field dynamics results in the most energetic electron cutoff. Our results establish HAS as a robust, compact, all-solid-state method for characterizing light fields with attosecond-level precision and as a powerful tool in light field synthesis.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.