{"title":"3D-HoloNet: fast, unfiltered, 3D hologram generation with camera-calibrated network learning.","authors":"Wenbin Zhou, Feifan Qu, Xiangyu Meng, Zhenyang Li, Yifan Peng","doi":"10.1364/OL.544816","DOIUrl":null,"url":null,"abstract":"<p><p>Computational holographic displays typically rely on time-consuming iterative computer-generated holographic (CGH) algorithms and bulky physical filters to attain high-quality reconstruction images. This trade-off between inference speed and image quality becomes more pronounced when aiming to realize 3D holographic imagery. This work presents <i>3D-HoloNet</i>, a deep neural network-empowered CGH algorithm for generating phase-only holograms (POHs) of 3D scenes, represented as RGB-D images, in real time. The proposed scheme incorporates a learned, camera-calibrated wave propagation model and a phase regularization prior into its optimization. This unique combination allows for accommodating practical, unfiltered holographic display setups that may be corrupted by various hardware imperfections. Results tested on an unfiltered holographic display reveal that the proposed <i>3D-HoloNet</i> can achieve 30 fps at full HD for one color channel using a consumer-level GPU while maintaining image quality comparable to iterative methods across multiple focused distances.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1188-1191"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.544816","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Computational holographic displays typically rely on time-consuming iterative computer-generated holographic (CGH) algorithms and bulky physical filters to attain high-quality reconstruction images. This trade-off between inference speed and image quality becomes more pronounced when aiming to realize 3D holographic imagery. This work presents 3D-HoloNet, a deep neural network-empowered CGH algorithm for generating phase-only holograms (POHs) of 3D scenes, represented as RGB-D images, in real time. The proposed scheme incorporates a learned, camera-calibrated wave propagation model and a phase regularization prior into its optimization. This unique combination allows for accommodating practical, unfiltered holographic display setups that may be corrupted by various hardware imperfections. Results tested on an unfiltered holographic display reveal that the proposed 3D-HoloNet can achieve 30 fps at full HD for one color channel using a consumer-level GPU while maintaining image quality comparable to iterative methods across multiple focused distances.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.