Tao Huang, Le Yang, Weina Zhang, Jiazhen Dou, Jianglei Di, Jiachen Wu, Joseph Rosen, Liyun Zhong
{"title":"Unsupervised cross talk suppression for self-interference digital holography.","authors":"Tao Huang, Le Yang, Weina Zhang, Jiazhen Dou, Jianglei Di, Jiachen Wu, Joseph Rosen, Liyun Zhong","doi":"10.1364/OL.544342","DOIUrl":null,"url":null,"abstract":"<p><p>Self-interference digital holography extends the application of digital holography to non-coherent imaging fields such as fluorescence and scattered light, providing a new solution, to the best of our knowledge, for wide field 3D imaging of low coherence or partially coherent signals. However, cross talk information has always been an important factor limiting the resolution of this imaging method. The suppression of cross talk information is a complex nonlinear problem, and deep learning can easily obtain its corresponding nonlinear model through data-driven methods. However, in real experiments, it is difficult to obtain such paired datasets to complete training. Here, we propose an unsupervised cross talk suppression method based on a cycle-consistent generative adversarial network (CycleGAN) for self-interference digital holography. Through the introduction of a saliency constraint, the unsupervised model, named crosstalk suppressing with unsupervised neural network (CS-UNN), can learn the mapping between two image domains without requiring paired training data while avoiding distortions of the image content. Experimental analysis has shown that this method can suppress cross talk information in reconstructed images without the need for training strategies on a large number of paired datasets, providing an effective solution for the application of the self-interference digital holography technology.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1261-1264"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.544342","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Self-interference digital holography extends the application of digital holography to non-coherent imaging fields such as fluorescence and scattered light, providing a new solution, to the best of our knowledge, for wide field 3D imaging of low coherence or partially coherent signals. However, cross talk information has always been an important factor limiting the resolution of this imaging method. The suppression of cross talk information is a complex nonlinear problem, and deep learning can easily obtain its corresponding nonlinear model through data-driven methods. However, in real experiments, it is difficult to obtain such paired datasets to complete training. Here, we propose an unsupervised cross talk suppression method based on a cycle-consistent generative adversarial network (CycleGAN) for self-interference digital holography. Through the introduction of a saliency constraint, the unsupervised model, named crosstalk suppressing with unsupervised neural network (CS-UNN), can learn the mapping between two image domains without requiring paired training data while avoiding distortions of the image content. Experimental analysis has shown that this method can suppress cross talk information in reconstructed images without the need for training strategies on a large number of paired datasets, providing an effective solution for the application of the self-interference digital holography technology.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.