Unsupervised cross talk suppression for self-interference digital holography.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-02-15 DOI:10.1364/OL.544342
Tao Huang, Le Yang, Weina Zhang, Jiazhen Dou, Jianglei Di, Jiachen Wu, Joseph Rosen, Liyun Zhong
{"title":"Unsupervised cross talk suppression for self-interference digital holography.","authors":"Tao Huang, Le Yang, Weina Zhang, Jiazhen Dou, Jianglei Di, Jiachen Wu, Joseph Rosen, Liyun Zhong","doi":"10.1364/OL.544342","DOIUrl":null,"url":null,"abstract":"<p><p>Self-interference digital holography extends the application of digital holography to non-coherent imaging fields such as fluorescence and scattered light, providing a new solution, to the best of our knowledge, for wide field 3D imaging of low coherence or partially coherent signals. However, cross talk information has always been an important factor limiting the resolution of this imaging method. The suppression of cross talk information is a complex nonlinear problem, and deep learning can easily obtain its corresponding nonlinear model through data-driven methods. However, in real experiments, it is difficult to obtain such paired datasets to complete training. Here, we propose an unsupervised cross talk suppression method based on a cycle-consistent generative adversarial network (CycleGAN) for self-interference digital holography. Through the introduction of a saliency constraint, the unsupervised model, named crosstalk suppressing with unsupervised neural network (CS-UNN), can learn the mapping between two image domains without requiring paired training data while avoiding distortions of the image content. Experimental analysis has shown that this method can suppress cross talk information in reconstructed images without the need for training strategies on a large number of paired datasets, providing an effective solution for the application of the self-interference digital holography technology.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1261-1264"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.544342","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-interference digital holography extends the application of digital holography to non-coherent imaging fields such as fluorescence and scattered light, providing a new solution, to the best of our knowledge, for wide field 3D imaging of low coherence or partially coherent signals. However, cross talk information has always been an important factor limiting the resolution of this imaging method. The suppression of cross talk information is a complex nonlinear problem, and deep learning can easily obtain its corresponding nonlinear model through data-driven methods. However, in real experiments, it is difficult to obtain such paired datasets to complete training. Here, we propose an unsupervised cross talk suppression method based on a cycle-consistent generative adversarial network (CycleGAN) for self-interference digital holography. Through the introduction of a saliency constraint, the unsupervised model, named crosstalk suppressing with unsupervised neural network (CS-UNN), can learn the mapping between two image domains without requiring paired training data while avoiding distortions of the image content. Experimental analysis has shown that this method can suppress cross talk information in reconstructed images without the need for training strategies on a large number of paired datasets, providing an effective solution for the application of the self-interference digital holography technology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信