{"title":"Design of compact surface-emitting nanolasers based on topological guided-mode resonance.","authors":"Linyong Qian, Jiahua Zhang, Kangni Wang","doi":"10.1364/OL.545916","DOIUrl":null,"url":null,"abstract":"<p><p>We numerically design a compact nanolaser based on a topological guided-mode resonance (GMR) structure. It consists of a topological junction formed by two GMR gratings, which induces a leaky Jackiw-Rebbi (JR) edge state that confines in-plane light within a small mode volume. Using the finite-difference time-domain (FDTD) method to simulate active optical responses, we show that surface-emitting lasing is achieved with a threshold of 4.5 µJ/cm<sup>2</sup> within a cavity length of approximately 2.0 µm. In addition, by replacing the junction with an array of equally spaced ridges in a critical phase, the edge mode transitions into a bulk mode. This modification allows for controllable cavity sizes of 4.9, 7.8, and 10.7 µm, with corresponding thresholds of 6.0, 8.4, and 9.0 µJ/cm<sup>2</sup>, achieved by using 5, 10, and 15 cycles of critical state grating. The topological GMR holds promise for compact coherent sources.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1069-1072"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.545916","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We numerically design a compact nanolaser based on a topological guided-mode resonance (GMR) structure. It consists of a topological junction formed by two GMR gratings, which induces a leaky Jackiw-Rebbi (JR) edge state that confines in-plane light within a small mode volume. Using the finite-difference time-domain (FDTD) method to simulate active optical responses, we show that surface-emitting lasing is achieved with a threshold of 4.5 µJ/cm2 within a cavity length of approximately 2.0 µm. In addition, by replacing the junction with an array of equally spaced ridges in a critical phase, the edge mode transitions into a bulk mode. This modification allows for controllable cavity sizes of 4.9, 7.8, and 10.7 µm, with corresponding thresholds of 6.0, 8.4, and 9.0 µJ/cm2, achieved by using 5, 10, and 15 cycles of critical state grating. The topological GMR holds promise for compact coherent sources.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.