{"title":"Depth-gated Fourier transform to accelerate spectral recovery in visible light optical coherence tomography retinal oximetry.","authors":"Stephanie L Nolen, Jingyu Wang, Ji Yi","doi":"10.1364/OL.545499","DOIUrl":null,"url":null,"abstract":"<p><p>Visible light optical coherence tomography (VIS-OCT) provides retinal oximetry at micro-level vessels by performing spatiospectral analysis. Typical methodology involves the short-time Fourier transform (STFT), which requires computationally intensive repetitive transforms. Here we report a depth-gated Fourier transform (DGFT) method to reduce the number of transforms (and time) for spectral extraction by windowing the depth domain. The number of transforms was decreased from 13 to 3 by DGFT, nearly 6× faster in computation time than STFT. We validated DGFT for retinal oximetry in a human eye. Oxygen saturation (sO<sub>2</sub>) values matched well between STFT and DGFT (percent difference of 0.63% ± 1.10%), while the DGFT extracted spectra significantly faster than the STFT (0.15 ± 0.11 s vs 0.89 ± 0.48 s). The reported method shows potential for real-time oximetry calculation in the future.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1061-1064"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.545499","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Visible light optical coherence tomography (VIS-OCT) provides retinal oximetry at micro-level vessels by performing spatiospectral analysis. Typical methodology involves the short-time Fourier transform (STFT), which requires computationally intensive repetitive transforms. Here we report a depth-gated Fourier transform (DGFT) method to reduce the number of transforms (and time) for spectral extraction by windowing the depth domain. The number of transforms was decreased from 13 to 3 by DGFT, nearly 6× faster in computation time than STFT. We validated DGFT for retinal oximetry in a human eye. Oxygen saturation (sO2) values matched well between STFT and DGFT (percent difference of 0.63% ± 1.10%), while the DGFT extracted spectra significantly faster than the STFT (0.15 ± 0.11 s vs 0.89 ± 0.48 s). The reported method shows potential for real-time oximetry calculation in the future.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.