"All-U-Want" Strand Displacement Amplification: A Versatile Signal Amplification Method for Nucleic Acid Biosensing.

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
ACS Sensors Pub Date : 2025-02-28 Epub Date: 2025-02-14 DOI:10.1021/acssensors.4c02765
Yapeng Wu, Bei Lv, Xintian Ni, Sheng Zhu, Dawei Li
{"title":"\"All-U-Want\" Strand Displacement Amplification: A Versatile Signal Amplification Method for Nucleic Acid Biosensing.","authors":"Yapeng Wu, Bei Lv, Xintian Ni, Sheng Zhu, Dawei Li","doi":"10.1021/acssensors.4c02765","DOIUrl":null,"url":null,"abstract":"<p><p>Strand displacement amplification (SDA) is an isothermal DNA amplification technique. Herein, we developed a novel SDA system, designated All-U-Want SDA (AUW-SDA), which was used as a signal amplification strategy for the construction of nucleic acid detection biosensors. AUW-SDA is capable of target turnover and can be utilized for detection of nucleic acid sequences without available 3'-ends. Of particular significance is the ability of AUW-SDA to generate a substantial number of programmable sequences in accordance with the specifications of the sensor signal output methods, irrespective of the sequence of the target nucleic acid. We used the <i>N</i> gene of SARS-CoV-2 as a model target to develop a sensing platform with dual signal outputs. The colorimetric signals were generated by the G-quadruplex/hemin DNAzyme, in which the G-rich sequences were produced by AUW-SDA with a C-rich primer. On the other hand, by altering the sequence within the replaceable region of the primer, an activator sequence was obtained from AUW-SDA, which could trigger the activity of CRISPR/Cas12a, cleaving the probes modified with a fluorophore and quencher at each end and subsequently yielding the fluorescent signals. After the DNA sequences and reaction conditions were optimized, the limit of detection (LOD) values of the fluorescent and colorimetric assays were estimated to be 0.672 fM and 13.3 fM, respectively. The biosensors were utilized for biological sample detection. The reliability of the proposed method was validated against RT-qPCR results. In addition, a portable scanner-assisted high-throughput RGB analysis (PSHRA) method was developed. This method was applied to our biosensor for multilocus detection of SARS-CoV-2. The results obtained were satisfactory, indicating the potential of this approach for field testing or point-of-care (POC) diagnostics.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":"965-976"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02765","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Strand displacement amplification (SDA) is an isothermal DNA amplification technique. Herein, we developed a novel SDA system, designated All-U-Want SDA (AUW-SDA), which was used as a signal amplification strategy for the construction of nucleic acid detection biosensors. AUW-SDA is capable of target turnover and can be utilized for detection of nucleic acid sequences without available 3'-ends. Of particular significance is the ability of AUW-SDA to generate a substantial number of programmable sequences in accordance with the specifications of the sensor signal output methods, irrespective of the sequence of the target nucleic acid. We used the N gene of SARS-CoV-2 as a model target to develop a sensing platform with dual signal outputs. The colorimetric signals were generated by the G-quadruplex/hemin DNAzyme, in which the G-rich sequences were produced by AUW-SDA with a C-rich primer. On the other hand, by altering the sequence within the replaceable region of the primer, an activator sequence was obtained from AUW-SDA, which could trigger the activity of CRISPR/Cas12a, cleaving the probes modified with a fluorophore and quencher at each end and subsequently yielding the fluorescent signals. After the DNA sequences and reaction conditions were optimized, the limit of detection (LOD) values of the fluorescent and colorimetric assays were estimated to be 0.672 fM and 13.3 fM, respectively. The biosensors were utilized for biological sample detection. The reliability of the proposed method was validated against RT-qPCR results. In addition, a portable scanner-assisted high-throughput RGB analysis (PSHRA) method was developed. This method was applied to our biosensor for multilocus detection of SARS-CoV-2. The results obtained were satisfactory, indicating the potential of this approach for field testing or point-of-care (POC) diagnostics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信