In silico based Diabetic Wound Healer from Nature: An Update.

Amit Lather, Pratibha Rathee, Manish Kumar Gautam, Kalicharan Sharma, Tanuj Hooda
{"title":"In silico based Diabetic Wound Healer from Nature: An Update.","authors":"Amit Lather, Pratibha Rathee, Manish Kumar Gautam, Kalicharan Sharma, Tanuj Hooda","doi":"10.2174/0115701638336128250122223221","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a chronic metabolic disease of high levels of glucose in the blood and affecting 536.6 million people in the world between the age group of 20-79 with management spent of 11% of the total worldwide. Wound healing in diabetics is impaired due to many factors like high blood sugar, poor blood circulation, damaged blood vessels, diabetic neuropathy, decreased immune responses etc. The presently used synthetic drugs have high costs, a toxic nature, and are full of adverse effects drawing attention to the need to identify new and successful treatment approaches for diabetic wounds. In silico drug screening methods of drug development made it easy to screen thousands of active constituents against a target specifically responsible for diabetes and wound healing. Thus the current review compiled the naturally available active compounds screened by in silico docking from natural resources and has the potential to treat diabetic wound healing with their specificity and target-based mechanism. This information will be helpful for further screening of non-reported natural compounds having antidiabetic as well as wound healing potential.</p>","PeriodicalId":93962,"journal":{"name":"Current drug discovery technologies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug discovery technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115701638336128250122223221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a chronic metabolic disease of high levels of glucose in the blood and affecting 536.6 million people in the world between the age group of 20-79 with management spent of 11% of the total worldwide. Wound healing in diabetics is impaired due to many factors like high blood sugar, poor blood circulation, damaged blood vessels, diabetic neuropathy, decreased immune responses etc. The presently used synthetic drugs have high costs, a toxic nature, and are full of adverse effects drawing attention to the need to identify new and successful treatment approaches for diabetic wounds. In silico drug screening methods of drug development made it easy to screen thousands of active constituents against a target specifically responsible for diabetes and wound healing. Thus the current review compiled the naturally available active compounds screened by in silico docking from natural resources and has the potential to treat diabetic wound healing with their specificity and target-based mechanism. This information will be helpful for further screening of non-reported natural compounds having antidiabetic as well as wound healing potential.

基于硅的糖尿病伤口愈合器:更新。
糖尿病是一种血液中葡萄糖水平高的慢性代谢性疾病,影响着全世界20-79岁年龄组的5.366亿人,治疗费用占全球总费用的11%。糖尿病患者的伤口愈合受到多种因素的影响,如高血糖、血液循环不良、血管受损、糖尿病神经病变、免疫反应下降等。目前使用的合成药物成本高、毒性大、副作用多,需要寻找新的、成功的治疗糖尿病伤口的方法。在计算机上,药物开发的药物筛选方法可以很容易地筛选成千上万的活性成分,以对抗专门负责糖尿病和伤口愈合的目标。因此,本综述从自然资源中筛选了天然有效的活性化合物,这些化合物具有特异性和靶向机制,具有治疗糖尿病创面愈合的潜力。这一信息将有助于进一步筛选未报道的具有抗糖尿病和伤口愈合潜力的天然化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信