STMiner: Gene-centric spatial transcriptomics for deciphering tumor tissues.

IF 11.1 Q1 CELL BIOLOGY
Peisen Sun, Stephen J Bush, Songbo Wang, Peng Jia, Mingxuan Li, Tun Xu, Pengyu Zhang, Xiaofei Yang, Chengyao Wang, Linfeng Xu, Tingjie Wang, Kai Ye
{"title":"STMiner: Gene-centric spatial transcriptomics for deciphering tumor tissues.","authors":"Peisen Sun, Stephen J Bush, Songbo Wang, Peng Jia, Mingxuan Li, Tun Xu, Pengyu Zhang, Xiaofei Yang, Chengyao Wang, Linfeng Xu, Tingjie Wang, Kai Ye","doi":"10.1016/j.xgen.2025.100771","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing spatial transcriptomics data from tumor tissues poses several challenges beyond those of healthy samples, including unclear boundaries between different regions, uneven cell densities, and relatively higher cellular heterogeneity. Collectively, these bias the background against which spatially variable genes are identified, which can result in misidentification of spatial structures and hinder potential insight into complex pathologies. To overcome this problem, STMiner leverages 2D Gaussian mixture models and optimal transport theory to directly characterize the spatial distribution of genes rather than the capture locations of the cells expressing them (spots). By effectively mitigating the impacts of both background bias and data sparsity, STMiner reveals key gene sets and spatial structures overlooked by spot-based analytic tools, facilitating novel biological discoveries. The core concept of directly analyzing overall gene expression patterns also allows for a broader application beyond spatial transcriptomics, positioning STMiner for continuous expansion as spatial omics technologies evolve.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"5 2","pages":"100771"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing spatial transcriptomics data from tumor tissues poses several challenges beyond those of healthy samples, including unclear boundaries between different regions, uneven cell densities, and relatively higher cellular heterogeneity. Collectively, these bias the background against which spatially variable genes are identified, which can result in misidentification of spatial structures and hinder potential insight into complex pathologies. To overcome this problem, STMiner leverages 2D Gaussian mixture models and optimal transport theory to directly characterize the spatial distribution of genes rather than the capture locations of the cells expressing them (spots). By effectively mitigating the impacts of both background bias and data sparsity, STMiner reveals key gene sets and spatial structures overlooked by spot-based analytic tools, facilitating novel biological discoveries. The core concept of directly analyzing overall gene expression patterns also allows for a broader application beyond spatial transcriptomics, positioning STMiner for continuous expansion as spatial omics technologies evolve.

STMiner:以基因为中心的空间转录组学来破译肿瘤组织。
分析来自肿瘤组织的空间转录组学数据,除了健康样本之外,还面临着一些挑战,包括不同区域之间的边界不明确、细胞密度不均匀以及相对较高的细胞异质性。总的来说,这些偏差导致了空间可变基因识别的背景,这可能导致空间结构的错误识别,并阻碍了对复杂病理的潜在认识。为了克服这个问题,STMiner利用二维高斯混合模型和最优运输理论来直接表征基因的空间分布,而不是表达它们的细胞的捕获位置(斑点)。通过有效减轻背景偏差和数据稀疏性的影响,STMiner揭示了基于点的分析工具忽略的关键基因集和空间结构,促进了新的生物学发现。直接分析整体基因表达模式的核心概念也允许在空间转录组学之外有更广泛的应用,随着空间组学技术的发展,STMiner将不断扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信