Secure and federated quantitative trait loci mapping with privateQTL.

IF 11.1 Q1 CELL BIOLOGY
Yoolim Annie Choi, Yebin Kim, Peihan Miao, Tuuli Lappalainen, Gamze Gürsoy
{"title":"Secure and federated quantitative trait loci mapping with privateQTL.","authors":"Yoolim Annie Choi, Yebin Kim, Peihan Miao, Tuuli Lappalainen, Gamze Gürsoy","doi":"10.1016/j.xgen.2025.100769","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the relationship between genotypes and phenotypes is crucial for advancing personalized medicine. Expression quantitative trait loci (eQTL) mapping plays a significant role by correlating genetic variants to gene expression levels. Despite the progress made by large-scale projects, eQTL mapping still faces challenges in statistical power and privacy concerns. Multi-site studies can increase sample sizes but are hindered by privacy issues. We present privateQTL, a novel framework leveraging secure multi-party computation for secure and federated eQTL mapping. When tested in a real-world scenario with data from different studies, privateQTL outperformed meta-analysis by accurately correcting for covariates and batch effect and retaining higher accuracy and precision for both eGene-eVariant mapping and effect size estimation. In addition, privateQTL is modular and scalable, making it adaptable for other molecular phenotypes and large-scale studies. Our results indicate that privateQTL is a practical solution for privacy-preserving collaborative eQTL mapping.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"5 2","pages":"100769"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relationship between genotypes and phenotypes is crucial for advancing personalized medicine. Expression quantitative trait loci (eQTL) mapping plays a significant role by correlating genetic variants to gene expression levels. Despite the progress made by large-scale projects, eQTL mapping still faces challenges in statistical power and privacy concerns. Multi-site studies can increase sample sizes but are hindered by privacy issues. We present privateQTL, a novel framework leveraging secure multi-party computation for secure and federated eQTL mapping. When tested in a real-world scenario with data from different studies, privateQTL outperformed meta-analysis by accurately correcting for covariates and batch effect and retaining higher accuracy and precision for both eGene-eVariant mapping and effect size estimation. In addition, privateQTL is modular and scalable, making it adaptable for other molecular phenotypes and large-scale studies. Our results indicate that privateQTL is a practical solution for privacy-preserving collaborative eQTL mapping.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信