Jia Hu, Qing Yu, Lei Wang, Hengchong Shi, Shifang Luan
{"title":"Recent Progress in Antibacterial Surfaces for Implant Catheters.","authors":"Jia Hu, Qing Yu, Lei Wang, Hengchong Shi, Shifang Luan","doi":"10.34133/bmef.0063","DOIUrl":null,"url":null,"abstract":"<p><p>Catheter-related infections (CRIs) caused by hospital-acquired microbial infections lead to the failure of treatment and the increase of mortality and morbidity. Surface modifications of the implant catheters have been demonstrated to be effective approaches to improve and largely reduce the bacterial colonization and related complications. In this work, we focus on the last 5-year progress in the surface modifications of biomedical catheters to prevent CRIs. Their antibacterial strategies used for surface modifications are further divided into 5 classifications through the antimicrobial mechanisms, including active surfaces, passive surfaces, active and passive combination surfaces, stimulus-type response surfaces, and other types. Each feature and the latest advances in these abovementioned antibacterial surfaces of implant catheters are highlighted. Finally, these confronting challenges and future prospects are discussed for the antibacterial modifications of implant catheters.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0063"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Catheter-related infections (CRIs) caused by hospital-acquired microbial infections lead to the failure of treatment and the increase of mortality and morbidity. Surface modifications of the implant catheters have been demonstrated to be effective approaches to improve and largely reduce the bacterial colonization and related complications. In this work, we focus on the last 5-year progress in the surface modifications of biomedical catheters to prevent CRIs. Their antibacterial strategies used for surface modifications are further divided into 5 classifications through the antimicrobial mechanisms, including active surfaces, passive surfaces, active and passive combination surfaces, stimulus-type response surfaces, and other types. Each feature and the latest advances in these abovementioned antibacterial surfaces of implant catheters are highlighted. Finally, these confronting challenges and future prospects are discussed for the antibacterial modifications of implant catheters.