A genome-scale metabolic reconstruction resource of 247,092 diverse human microbes spanning multiple continents, age groups, and body sites.

Cell systems Pub Date : 2025-02-19 Epub Date: 2025-02-12 DOI:10.1016/j.cels.2025.101196
Almut Heinken, Timothy Otto Hulshof, Bram Nap, Filippo Martinelli, Arianna Basile, Amy O'Brolchain, Neil Francis O'Sullivan, Celine Gallagher, Eimer Magee, Francesca McDonagh, Ian Lalor, Maeve Bergin, Phoebe Evans, Rachel Daly, Ronan Farrell, Rose Mary Delaney, Saoirse Hill, Saoirse Roisin McAuliffe, Trevor Kilgannon, Ronan M T Fleming, Cyrille C Thinnes, Ines Thiele
{"title":"A genome-scale metabolic reconstruction resource of 247,092 diverse human microbes spanning multiple continents, age groups, and body sites.","authors":"Almut Heinken, Timothy Otto Hulshof, Bram Nap, Filippo Martinelli, Arianna Basile, Amy O'Brolchain, Neil Francis O'Sullivan, Celine Gallagher, Eimer Magee, Francesca McDonagh, Ian Lalor, Maeve Bergin, Phoebe Evans, Rachel Daly, Ronan Farrell, Rose Mary Delaney, Saoirse Hill, Saoirse Roisin McAuliffe, Trevor Kilgannon, Ronan M T Fleming, Cyrille C Thinnes, Ines Thiele","doi":"10.1016/j.cels.2025.101196","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-scale modeling of microbiome metabolism enables the simulation of diet-host-microbiome-disease interactions. However, current genome-scale reconstruction resources are limited in scope by computational challenges. We developed an optimized and highly parallelized reconstruction and analysis pipeline to build a resource of 247,092 microbial genome-scale metabolic reconstructions, deemed APOLLO. APOLLO spans 19 phyla, contains >60% of uncharacterized strains, and accounts for strains from 34 countries, all age groups, and multiple body sites. Using machine learning, we predicted with high accuracy the taxonomic assignment of strains based on the computed metabolic features. We then built 14,451 metagenomic sample-specific microbiome community models to systematically interrogate their community-level metabolic capabilities. We show that sample-specific metabolic pathways accurately stratify microbiomes by body site, age, and disease state. APOLLO is freely available, enables the systematic interrogation of the metabolic capabilities of largely still uncultured and unclassified species, and provides unprecedented opportunities for systems-level modeling of personalized host-microbiome co-metabolism.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101196"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-scale modeling of microbiome metabolism enables the simulation of diet-host-microbiome-disease interactions. However, current genome-scale reconstruction resources are limited in scope by computational challenges. We developed an optimized and highly parallelized reconstruction and analysis pipeline to build a resource of 247,092 microbial genome-scale metabolic reconstructions, deemed APOLLO. APOLLO spans 19 phyla, contains >60% of uncharacterized strains, and accounts for strains from 34 countries, all age groups, and multiple body sites. Using machine learning, we predicted with high accuracy the taxonomic assignment of strains based on the computed metabolic features. We then built 14,451 metagenomic sample-specific microbiome community models to systematically interrogate their community-level metabolic capabilities. We show that sample-specific metabolic pathways accurately stratify microbiomes by body site, age, and disease state. APOLLO is freely available, enables the systematic interrogation of the metabolic capabilities of largely still uncultured and unclassified species, and provides unprecedented opportunities for systems-level modeling of personalized host-microbiome co-metabolism.

微生物组代谢的基因组尺度建模可以模拟饮食-宿主-微生物组-疾病之间的相互作用。然而,目前的基因组尺度重建资源在范围上受到计算挑战的限制。我们开发了一个优化的、高度并行化的重建和分析管道,建立了一个包含 247,092 个微生物基因组尺度代谢重建的资源,称为 APOLLO。APOLLO 涵盖 19 个门类,包含 60% 以上的未定性菌株,并包含来自 34 个国家、所有年龄组和多个身体部位的菌株。通过机器学习,我们根据计算出的代谢特征高精度地预测了菌株的分类分配。然后,我们建立了 14,451 个元基因组样本特异性微生物群落模型,以系统地研究其群落级代谢能力。我们的研究表明,样本特异性代谢途径能准确地按身体部位、年龄和疾病状态对微生物组进行分层。APOLLO 可免费获取,能够系统地检测大部分仍未培养和分类的物种的代谢能力,并为个性化宿主-微生物群协同代谢的系统级建模提供了前所未有的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信