Kinematic considerations for achieving the quadruple axel jump: comparison with triple axel jumps among world-class figure skaters using tracking data.
{"title":"Kinematic considerations for achieving the quadruple axel jump: comparison with triple axel jumps among world-class figure skaters using tracking data.","authors":"Seiji Hirosawa","doi":"10.1080/14763141.2025.2464787","DOIUrl":null,"url":null,"abstract":"<p><p>In figure skating, achieving higher scores often relies on the successful execution of difficult jumps, e.g., quadruple jumps. According to previous biomechanical studies, jump heights do not change significantly even with more rotational jumps. However, strategies employed by top skaters to acquire new jumps are unclear. Therefore, this study aimed to investigate specific kinematic strategies used by skaters to perform the quadruple axel jump (4A), focusing on two skaters (skaters A and B) who attempted this jump in competitions. Using data from the Ice Scope tracking system, this study analysed the vertical height, horizontal distance, take-off speed, landing speed, and height-to-distance ratio of the jumps. Both skaters achieved higher vertical heights in their 4A attempts than in their triple axel jump (3A) attempts. Notably, Skater A's successful 4A and Skater B's downgraded 4A had significantly greater vertical heights than the average 3As among world-class skaters. This suggests a strategic shift towards increasing the vertical height to master 4As, contrary to previous biomechanical research that did not emphasise vertical height. These findings update existing theories on figure skating research and provide insights into training strategies for mastering difficult jumps.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-12"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2025.2464787","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In figure skating, achieving higher scores often relies on the successful execution of difficult jumps, e.g., quadruple jumps. According to previous biomechanical studies, jump heights do not change significantly even with more rotational jumps. However, strategies employed by top skaters to acquire new jumps are unclear. Therefore, this study aimed to investigate specific kinematic strategies used by skaters to perform the quadruple axel jump (4A), focusing on two skaters (skaters A and B) who attempted this jump in competitions. Using data from the Ice Scope tracking system, this study analysed the vertical height, horizontal distance, take-off speed, landing speed, and height-to-distance ratio of the jumps. Both skaters achieved higher vertical heights in their 4A attempts than in their triple axel jump (3A) attempts. Notably, Skater A's successful 4A and Skater B's downgraded 4A had significantly greater vertical heights than the average 3As among world-class skaters. This suggests a strategic shift towards increasing the vertical height to master 4As, contrary to previous biomechanical research that did not emphasise vertical height. These findings update existing theories on figure skating research and provide insights into training strategies for mastering difficult jumps.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.