An Explainable AI Application (AF'fective) to Support Monitoring of Patients With Atrial Fibrillation After Catheter Ablation: Qualitative Focus Group, Design Session, and Interview Study.

IF 2.6 Q2 HEALTH CARE SCIENCES & SERVICES
JMIR Human Factors Pub Date : 2025-02-13 DOI:10.2196/65923
Wan Jou She, Panote Siriaraya, Hibiki Iwakoshi, Noriaki Kuwahara, Keitaro Senoo
{"title":"An Explainable AI Application (AF'fective) to Support Monitoring of Patients With Atrial Fibrillation After Catheter Ablation: Qualitative Focus Group, Design Session, and Interview Study.","authors":"Wan Jou She, Panote Siriaraya, Hibiki Iwakoshi, Noriaki Kuwahara, Keitaro Senoo","doi":"10.2196/65923","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The opaque nature of artificial intelligence (AI) algorithms has led to distrust in medical contexts, particularly in the treatment and monitoring of atrial fibrillation. Although previous studies in explainable AI have demonstrated potential to address this issue, they often focus solely on electrocardiography graphs and lack real-world field insights.</p><p><strong>Objective: </strong>We addressed this gap by incorporating standardized clinical interpretation of electrocardiography graphs into the system and collaborating with cardiologists to co-design and evaluate this approach using real-world patient cases and data.</p><p><strong>Methods: </strong>We conducted a 3-stage iterative design process with 23 cardiologists to co-design, evaluate, and pilot an explainable AI application. In the first stage, we identified 4 physician personas and 7 explainability strategies, which were reviewed in the second stage. A total of 4 strategies were deemed highly effective and feasible for pilot deployment. On the basis of these strategies, we developed a progressive web application and tested it with cardiologists in the third stage.</p><p><strong>Results: </strong>The final progressive web application prototype received above-average user experience evaluations and effectively motivated physicians to adopt it owing to its ease of use, reliable information, and explainable functionality. In addition, we gathered in-depth field insights from cardiologists who used the system in clinical contexts.</p><p><strong>Conclusions: </strong>Our study identified effective explainability strategies, emphasized the importance of curating actionable features and setting accurate expectations, and suggested that many of these insights could apply to other disease care contexts, paving the way for future real-world clinical evaluations.</p>","PeriodicalId":36351,"journal":{"name":"JMIR Human Factors","volume":"12 ","pages":"e65923"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Human Factors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/65923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The opaque nature of artificial intelligence (AI) algorithms has led to distrust in medical contexts, particularly in the treatment and monitoring of atrial fibrillation. Although previous studies in explainable AI have demonstrated potential to address this issue, they often focus solely on electrocardiography graphs and lack real-world field insights.

Objective: We addressed this gap by incorporating standardized clinical interpretation of electrocardiography graphs into the system and collaborating with cardiologists to co-design and evaluate this approach using real-world patient cases and data.

Methods: We conducted a 3-stage iterative design process with 23 cardiologists to co-design, evaluate, and pilot an explainable AI application. In the first stage, we identified 4 physician personas and 7 explainability strategies, which were reviewed in the second stage. A total of 4 strategies were deemed highly effective and feasible for pilot deployment. On the basis of these strategies, we developed a progressive web application and tested it with cardiologists in the third stage.

Results: The final progressive web application prototype received above-average user experience evaluations and effectively motivated physicians to adopt it owing to its ease of use, reliable information, and explainable functionality. In addition, we gathered in-depth field insights from cardiologists who used the system in clinical contexts.

Conclusions: Our study identified effective explainability strategies, emphasized the importance of curating actionable features and setting accurate expectations, and suggested that many of these insights could apply to other disease care contexts, paving the way for future real-world clinical evaluations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Human Factors
JMIR Human Factors Medicine-Health Informatics
CiteScore
3.40
自引率
3.70%
发文量
123
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信