Toosendanin Induces Cell Cycle Arrest and Apoptosis to Suppress Diffuse Large B-Cell Lymphoma Growth by Inhibiting PI3Kα/β and PLK1 Signaling.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Phytotherapy Research Pub Date : 2025-05-01 Epub Date: 2025-02-13 DOI:10.1002/ptr.8439
Qian Hu, Mengyao Wang, Meng Chen, Jinjin Wang, Ting Niu
{"title":"Toosendanin Induces Cell Cycle Arrest and Apoptosis to Suppress Diffuse Large B-Cell Lymphoma Growth by Inhibiting PI3Kα/β and PLK1 Signaling.","authors":"Qian Hu, Mengyao Wang, Meng Chen, Jinjin Wang, Ting Niu","doi":"10.1002/ptr.8439","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous subtype of non-Hodgkin lymphoma, with two-thirds of patients relapsing or resisting existing therapies, highlighting the urgent need for effective treatments. Toosendanin (TSN), a triterpenoid from Meliae Cortex, exhibits significant anti-cancer activity by modulating cell survival and proliferation. This study investigates the anti-lymphoma effects and underlying mechanisms of TSN, proposing it as a potential therapeutic agent to address the challenges of DLBCL. Network pharmacology, molecular docking, and transcriptome sequencing were employed to predict TSN's anti-DLBCL potential. Findings were validated through in vitro and in vivo experiments, including cell viability assays, flow cytometry, quantitative PCR, Western blotting, reverse experiments with small-molecule inhibitors or genetic editing, and a cell-derived xenograft (CDX) model. Bioinformatics analyses revealed TSN's strong binding affinity to PI3Kα/β and Polo-like kinase 1 (PLK1). Experiments showed that TSN downregulated the PI3K/Akt signaling pathway and reduced PLK1 mRNA and protein levels, inducing apoptosis, cell cycle arrest, and cell death in DLBCL cells. RNA sequencing and metabolic assays indicated TSN upregulated cholesterol biosynthesis in DLBCL cells. Co-treatment with a statin enhanced TSN's anti-DLBCL effects while mitigating hepatic and pulmonary toxicity. This study identifies TSN as a dual inhibitor of PI3K and PLK1 with significant therapeutic potential for DLBCL. It also proposes a lipid-modulating strategy to enhance TSN's cytotoxicity while reducing adverse effects, offering a promising approach to improve DLBCL treatment outcomes.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"1930-1945"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8439","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse large B-cell lymphoma (DLBCL) is an aggressive and heterogeneous subtype of non-Hodgkin lymphoma, with two-thirds of patients relapsing or resisting existing therapies, highlighting the urgent need for effective treatments. Toosendanin (TSN), a triterpenoid from Meliae Cortex, exhibits significant anti-cancer activity by modulating cell survival and proliferation. This study investigates the anti-lymphoma effects and underlying mechanisms of TSN, proposing it as a potential therapeutic agent to address the challenges of DLBCL. Network pharmacology, molecular docking, and transcriptome sequencing were employed to predict TSN's anti-DLBCL potential. Findings were validated through in vitro and in vivo experiments, including cell viability assays, flow cytometry, quantitative PCR, Western blotting, reverse experiments with small-molecule inhibitors or genetic editing, and a cell-derived xenograft (CDX) model. Bioinformatics analyses revealed TSN's strong binding affinity to PI3Kα/β and Polo-like kinase 1 (PLK1). Experiments showed that TSN downregulated the PI3K/Akt signaling pathway and reduced PLK1 mRNA and protein levels, inducing apoptosis, cell cycle arrest, and cell death in DLBCL cells. RNA sequencing and metabolic assays indicated TSN upregulated cholesterol biosynthesis in DLBCL cells. Co-treatment with a statin enhanced TSN's anti-DLBCL effects while mitigating hepatic and pulmonary toxicity. This study identifies TSN as a dual inhibitor of PI3K and PLK1 with significant therapeutic potential for DLBCL. It also proposes a lipid-modulating strategy to enhance TSN's cytotoxicity while reducing adverse effects, offering a promising approach to improve DLBCL treatment outcomes.

仙丹素通过抑制PI3Kα/β和PLK1信号通路诱导细胞周期阻滞和凋亡抑制弥漫性大b细胞淋巴瘤生长
弥漫性大b细胞淋巴瘤(DLBCL)是一种侵袭性和异质性的非霍奇金淋巴瘤亚型,三分之二的患者复发或抵抗现有治疗,迫切需要有效的治疗。仙丹素(Toosendanin, TSN)是一种三萜化合物,它通过调节细胞存活和增殖而具有显著的抗癌活性。本研究探讨了TSN的抗淋巴瘤作用及其潜在机制,提出TSN作为一种潜在的治疗药物来解决DLBCL的挑战。采用网络药理学、分子对接、转录组测序等方法预测TSN抗dlbcl的潜力。研究结果通过体外和体内实验得到验证,包括细胞活力测定、流式细胞术、定量PCR、Western blotting、小分子抑制剂或基因编辑的反向实验,以及细胞来源的异种移植(CDX)模型。生物信息学分析显示TSN与PI3Kα/β和polo样激酶1 (PLK1)有很强的结合亲和力。实验表明,TSN下调PI3K/Akt信号通路,降低PLK1 mRNA和蛋白水平,诱导DLBCL细胞凋亡、细胞周期阻滞和细胞死亡。RNA测序和代谢分析表明,TSN上调了DLBCL细胞的胆固醇生物合成。与他汀类药物联合治疗增强了TSN抗dlbcl的作用,同时减轻了肝和肺毒性。本研究发现TSN是PI3K和PLK1的双重抑制剂,对DLBCL具有显著的治疗潜力。该研究还提出了一种脂质调节策略,以增强TSN的细胞毒性,同时减少不良反应,为改善DLBCL治疗结果提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信