Ameliorating Paraquat-Induced Nephrotoxicity in Rats: Protective Effects of Nanocurcumin on Renal Histology and Molecular Pathways.

Q2 Pharmacology, Toxicology and Pharmaceutics
Davood Ahmadi Moghaddam, Mehdi Rahimi, Nejat Kheiripour, Zohre Sadeghian, Sara Soleymani Asl, Zahra Azizi, Akram Ranjbar
{"title":"Ameliorating Paraquat-Induced Nephrotoxicity in Rats: Protective Effects of Nanocurcumin on Renal Histology and Molecular Pathways.","authors":"Davood Ahmadi Moghaddam, Mehdi Rahimi, Nejat Kheiripour, Zohre Sadeghian, Sara Soleymani Asl, Zahra Azizi, Akram Ranjbar","doi":"10.2174/0122117385361582250112083125","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Paraquat (PQ) is a common herbicide, and its mortality results from injury to several organs, including the kidneys. Nanocurcumin and curcumin have anti-inflammatory and anti-oxidative activities, but their involvement in PQ-induced kidney damage is unclear. Therefore, the goal of our study was to compare nanocurcumin and curcumin in male rats whose kidneys were damaged by PQ.</p><p><strong>Method: </strong>42 eight-week male albino Wistar rats were put into six groups at random as control, control + curcumin, control + nanocurcumin, PQ, PQ + curcumin, PQ + nanocurcumin for 7 days. The kidney tissues and serum were collected at the end of this period. Total antioxidant capacity (TAC), lipid peroxidation (LPO), total thiol Molecule (TTM), urea, creatinine, and blood urea nitrogen (BUN) levels were assessed. The histopathological evaluation of kidney damage was performed at the end of our study. Moreover, the gene expression was assessed by biochemical and Reverse transcription polymerase chain reaction (RT-PCR) analysis.</p><p><strong>Result: </strong>Curcumin and nanocurcumin administration alleviated PQ-induced renal injury, as evidenced by reduced serum creatinine and BUN levels. The levels of antioxidant markers, like TAC and TTM, increased and decreased the levels of oxidative stress indexes like LPO. Furthermore, our result shows up-regulating the expression of nuclear factor-like 2 (Nrf2), NAD (P) H: quinine oxidoreductase 1 (NQO1), Heme oxygenase 1 (HO-1), and down-regulating the expression of Kelchlike ECH-associated protein 1 (Keap-1) in renal tissue.</p><p><strong>Conclusion: </strong>Niosomal curcumin was more advantageous than ordinary curcumin in lowering oxidative stress and renal tissue damage induced by paraquat intoxication.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385361582250112083125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Paraquat (PQ) is a common herbicide, and its mortality results from injury to several organs, including the kidneys. Nanocurcumin and curcumin have anti-inflammatory and anti-oxidative activities, but their involvement in PQ-induced kidney damage is unclear. Therefore, the goal of our study was to compare nanocurcumin and curcumin in male rats whose kidneys were damaged by PQ.

Method: 42 eight-week male albino Wistar rats were put into six groups at random as control, control + curcumin, control + nanocurcumin, PQ, PQ + curcumin, PQ + nanocurcumin for 7 days. The kidney tissues and serum were collected at the end of this period. Total antioxidant capacity (TAC), lipid peroxidation (LPO), total thiol Molecule (TTM), urea, creatinine, and blood urea nitrogen (BUN) levels were assessed. The histopathological evaluation of kidney damage was performed at the end of our study. Moreover, the gene expression was assessed by biochemical and Reverse transcription polymerase chain reaction (RT-PCR) analysis.

Result: Curcumin and nanocurcumin administration alleviated PQ-induced renal injury, as evidenced by reduced serum creatinine and BUN levels. The levels of antioxidant markers, like TAC and TTM, increased and decreased the levels of oxidative stress indexes like LPO. Furthermore, our result shows up-regulating the expression of nuclear factor-like 2 (Nrf2), NAD (P) H: quinine oxidoreductase 1 (NQO1), Heme oxygenase 1 (HO-1), and down-regulating the expression of Kelchlike ECH-associated protein 1 (Keap-1) in renal tissue.

Conclusion: Niosomal curcumin was more advantageous than ordinary curcumin in lowering oxidative stress and renal tissue damage induced by paraquat intoxication.

改善百草枯引起的大鼠肾毒性:纳米姜黄素对肾脏组织学和分子通路的保护作用。
背景:百草枯(PQ)是一种常见的除草剂,其致死性是由于对包括肾脏在内的多个器官的伤害。纳米姜黄素和姜黄素具有抗炎和抗氧化活性,但它们在pq诱导的肾损伤中的作用尚不清楚。因此,我们的研究目的是比较纳米姜黄素和姜黄素在PQ肾损伤的雄性大鼠中的作用。方法:将42只8周龄雄性白化Wistar大鼠随机分为6组,分别为对照组、对照组+姜黄素、对照组+纳米姜黄素、PQ、PQ +姜黄素、PQ +纳米姜黄素,连续7 d。试验结束后采集大鼠肾脏组织及血清。测定总抗氧化能力(TAC)、脂质过氧化(LPO)、总硫醇分子(TTM)、尿素、肌酐和血尿素氮(BUN)水平。在研究结束时进行肾脏损伤的组织病理学评估。此外,通过生化和逆转录聚合酶链反应(RT-PCR)分析来评估基因表达。结果:姜黄素和纳米姜黄素可降低血清肌酐和BUN水平,减轻pq所致的肾损伤。抗氧化标志物(如TAC和TTM)水平升高或降低氧化应激指标(如LPO)水平。此外,我们的研究结果显示,核因子样2 (Nrf2)、NAD (P) H:奎宁氧化还原酶1 (NQO1)、血红素加氧酶1 (HO-1)的表达上调,Kelchlike ECH-associated protein 1 (Keap-1)的表达下调。结论:Niosomal姜黄素比普通姜黄素更有利于降低百草枯中毒引起的氧化应激和肾组织损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信