Alfredo L Lopez Kolkovsky, Chencai Wang, Jingwen Yao, Benjamin M Ellingson
{"title":"Multinuclear Interleaving of <sup>1</sup>H CEST, Water T<sub>2</sub>*, and <sup>23</sup>Na MRI at 3 T.","authors":"Alfredo L Lopez Kolkovsky, Chencai Wang, Jingwen Yao, Benjamin M Ellingson","doi":"10.1002/nbm.70003","DOIUrl":null,"url":null,"abstract":"<p><p>MRI in vivo is a powerful clinical diagnosis tool as it allows acquiring noninvasively images with an ample range of contrasts. Advanced imaging techniques such as chemical exchange saturation transfer (CEST) allow measuring metabolic information including pH. Sodium tissue concentration, which can be measured by <sup>23</sup>Na MRI, is sensitive to changes in different pathological conditions. The routine clinical application of these techniques is limited by the required additional scan time. Multinuclear interleaved techniques allow reducing the total acquisition scan time by performing the pulse sequence elements of a <sup>1</sup>H imaging sequence during the idle times typically used in <sup>23</sup>Na MRI to allow magnetization recovery and reduce T<sub>1</sub> weighting. An interleaved radial amine CEST and sodium (INTERLACED) pulse sequence was developed on a clinical scanner to simultaneously map acidity or T<sub>2</sub>* decay with <sup>23</sup>Na signal, reducing the total scan time by 46% relative to sequential mononuclear acquisitions and without introducing any significant bias, as demonstrated in vitro. Dynamic INTERLACED measures were performed in the leg during a 5-min plantar flexion exercise and during a second plantar flexion exercise immediately followed by a 5-min voluntary isometric contraction. The results showed increased T<sub>2</sub>* and <sup>23</sup>Na signal during recovery in the gastrocnemius (GAS) while only an increase in <sup>23</sup>Na signal was observed in the soleus (SOL). During the isometric contraction, T<sub>2</sub>* decreased in GAS, SOL, and the tibialis anterior; the <sup>23</sup>Na signal increased in GAS and SOL; and the magnetization transfer asymmetry increased in GAS, in agreement with an increase of intracellular sodium and acidification of the extracellular space. Our approach requires no hardware modifications, facilitating its inclusion in clinical routine at 3 T. Furthermore, it could benefit functional studies by enabling the acquisition of dynamic multinuclear information simultaneously from the same transient state.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e70003"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
MRI in vivo is a powerful clinical diagnosis tool as it allows acquiring noninvasively images with an ample range of contrasts. Advanced imaging techniques such as chemical exchange saturation transfer (CEST) allow measuring metabolic information including pH. Sodium tissue concentration, which can be measured by 23Na MRI, is sensitive to changes in different pathological conditions. The routine clinical application of these techniques is limited by the required additional scan time. Multinuclear interleaved techniques allow reducing the total acquisition scan time by performing the pulse sequence elements of a 1H imaging sequence during the idle times typically used in 23Na MRI to allow magnetization recovery and reduce T1 weighting. An interleaved radial amine CEST and sodium (INTERLACED) pulse sequence was developed on a clinical scanner to simultaneously map acidity or T2* decay with 23Na signal, reducing the total scan time by 46% relative to sequential mononuclear acquisitions and without introducing any significant bias, as demonstrated in vitro. Dynamic INTERLACED measures were performed in the leg during a 5-min plantar flexion exercise and during a second plantar flexion exercise immediately followed by a 5-min voluntary isometric contraction. The results showed increased T2* and 23Na signal during recovery in the gastrocnemius (GAS) while only an increase in 23Na signal was observed in the soleus (SOL). During the isometric contraction, T2* decreased in GAS, SOL, and the tibialis anterior; the 23Na signal increased in GAS and SOL; and the magnetization transfer asymmetry increased in GAS, in agreement with an increase of intracellular sodium and acidification of the extracellular space. Our approach requires no hardware modifications, facilitating its inclusion in clinical routine at 3 T. Furthermore, it could benefit functional studies by enabling the acquisition of dynamic multinuclear information simultaneously from the same transient state.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.