Discovery of the PARP1 Inhibitors from Natural Compounds Using Structure-Based Virtual Screening and Bioactivity Evaluation.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Dabo Pan, Yaxuan Huang, Dewen Jiang, Xiaojie Jin, Mingkai Wu, Jianjun Luo, Yonghao Zhang
{"title":"Discovery of the PARP1 Inhibitors from Natural Compounds Using Structure-Based Virtual Screening and Bioactivity Evaluation.","authors":"Dabo Pan, Yaxuan Huang, Dewen Jiang, Xiaojie Jin, Mingkai Wu, Jianjun Luo, Yonghao Zhang","doi":"10.2174/0115734064350048241121110017","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>PARP1 (poly ADP-ribose polymerase 1, also known as ADPRT1) plays a significant role in DNA repair and has become an attractive target for treating PARP1-related diseases, such as cancer.</p><p><strong>Objective: </strong>This study aimed to discover inhibitors targeting PARP1 from the phytochemicals of Huangbai (Phellodendron chinense Schneid.), Baixianpi (Dictamnus dasycarpus Turcz.), and Shechuangzi (Cnidium monnieri (L.) Spreng.).</p><p><strong>Methods: </strong>The chemical compositions of Huangbai, Baixianpi, and Shechuangzi were extracted from the HERB database. Next, a combination of molecular docking and PARP1 enzyme assay was used to identify PARP1 inhibitors from these chemical components. Finally, molecular dynamics simulation and binding free energy calculation were used to explore the detailed interaction mode of these inhibitors with PARP1.</p><p><strong>Results: </strong>A total of 507 chemical constituents of Huangbai, Baixianpi, and Shechuangzi were collected from the HERB database. Four potential PARP1 inhibitors were screened based on molecular docking and PARP1 enzyme assay. Demethyleneberberine exhibited strong PARP1 inhibitory activity with an IC50 value of 2.0 ± 0.8 μM. The IC50 values of the inhibitory activities of 8-hydroxy dictanmnine, meranzin hydrate, and osthol on PARP1 ranged from 44 μM to 76 μM. Molecular dynamics simulation and binding free energy calculation suggested that the nonpolar interaction energies of HIS862, GLY863, TYR889, TYR896, PHE897, and TYR907 played a primary role in the binding of inhibitors to PARP1.</p><p><strong>Conclusion: </strong>Integrating molecular simulation and bioactivity testing was found to be an effective approach for the rapid discovery of targeted PARP1 inhibitors. Demethyleneberberine demonstrated strong PRAP1 inhibitory activity and has a good prospect for development.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064350048241121110017","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: PARP1 (poly ADP-ribose polymerase 1, also known as ADPRT1) plays a significant role in DNA repair and has become an attractive target for treating PARP1-related diseases, such as cancer.

Objective: This study aimed to discover inhibitors targeting PARP1 from the phytochemicals of Huangbai (Phellodendron chinense Schneid.), Baixianpi (Dictamnus dasycarpus Turcz.), and Shechuangzi (Cnidium monnieri (L.) Spreng.).

Methods: The chemical compositions of Huangbai, Baixianpi, and Shechuangzi were extracted from the HERB database. Next, a combination of molecular docking and PARP1 enzyme assay was used to identify PARP1 inhibitors from these chemical components. Finally, molecular dynamics simulation and binding free energy calculation were used to explore the detailed interaction mode of these inhibitors with PARP1.

Results: A total of 507 chemical constituents of Huangbai, Baixianpi, and Shechuangzi were collected from the HERB database. Four potential PARP1 inhibitors were screened based on molecular docking and PARP1 enzyme assay. Demethyleneberberine exhibited strong PARP1 inhibitory activity with an IC50 value of 2.0 ± 0.8 μM. The IC50 values of the inhibitory activities of 8-hydroxy dictanmnine, meranzin hydrate, and osthol on PARP1 ranged from 44 μM to 76 μM. Molecular dynamics simulation and binding free energy calculation suggested that the nonpolar interaction energies of HIS862, GLY863, TYR889, TYR896, PHE897, and TYR907 played a primary role in the binding of inhibitors to PARP1.

Conclusion: Integrating molecular simulation and bioactivity testing was found to be an effective approach for the rapid discovery of targeted PARP1 inhibitors. Demethyleneberberine demonstrated strong PRAP1 inhibitory activity and has a good prospect for development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信