Roles of hormones in regulating root growth-water interactions.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Shivam Sharma, Malcolm J Bennett, Poonam Mehra
{"title":"Roles of hormones in regulating root growth-water interactions.","authors":"Shivam Sharma, Malcolm J Bennett, Poonam Mehra","doi":"10.1093/jxb/eraf063","DOIUrl":null,"url":null,"abstract":"<p><p>Water stress presents a critical challenge affecting plant growth and agricultural productivity, with drought alone causing substantial yield losses. Roots serve as the primary site for water uptake, enabling plants to detect water stress by sensing changes in soil moisture levels. This initial perception prompts roots to initiate a spectrum of adaptive responses at morphological, anatomical, and biochemical levels. In addition to coping with severe water stress conditions such as drought, roots also respond to microscale variations in water availability within the rhizosphere as they navigate through soil, exhibiting responses such as hydrotropism, xerobranching, and hydropatterning. These adaptive responses are orchestrated by dynamic and sophisticated sensing and signalling mechanisms mediated by plant hormones at the cellular level. This review explores recent advances in our understanding of root responses to water stress, emphasizing the hormonal mechanisms underpinning these adaptations. Furthermore, it outlines future perspectives aimed at enhancing crop resilience to water stress through improved understanding and manipulation of root-water interactions.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":"1987-1995"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12066116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf063","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water stress presents a critical challenge affecting plant growth and agricultural productivity, with drought alone causing substantial yield losses. Roots serve as the primary site for water uptake, enabling plants to detect water stress by sensing changes in soil moisture levels. This initial perception prompts roots to initiate a spectrum of adaptive responses at morphological, anatomical, and biochemical levels. In addition to coping with severe water stress conditions such as drought, roots also respond to microscale variations in water availability within the rhizosphere as they navigate through soil, exhibiting responses such as hydrotropism, xerobranching, and hydropatterning. These adaptive responses are orchestrated by dynamic and sophisticated sensing and signalling mechanisms mediated by plant hormones at the cellular level. This review explores recent advances in our understanding of root responses to water stress, emphasizing the hormonal mechanisms underpinning these adaptations. Furthermore, it outlines future perspectives aimed at enhancing crop resilience to water stress through improved understanding and manipulation of root-water interactions.

激素在调节根系生长与水分相互作用中的作用。
水资源胁迫是影响植物生长和农业生产力的关键挑战,仅干旱就会造成大量产量损失。根系是吸收水分的主要场所,使植物能够通过感知土壤水分水平的变化来检测水分胁迫。这种最初的感知促使根在形态、解剖和生化水平上启动一系列适应性反应。除了应对干旱等严重的水分胁迫条件外,根系在穿越土壤时还会对根际水分有效性的微观变化做出反应,表现出亲水性、干分枝和水模式等反应。这些适应性反应是由植物激素在细胞水平上介导的动态和复杂的传感和信号机制精心策划的。这篇综述探讨了我们对根系对水分胁迫反应的理解的最新进展,强调了这些适应的激素机制。此外,它概述了未来的前景,旨在通过更好地理解和操纵根-水相互作用来提高作物对水分胁迫的抵御能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信