Pyridine indole hybrids as novel potent CYP17A1 inhibitors.

IF 5.4 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tomasz M Wróbel, Angelika Grudzińska, Jibira Yakubu, Therina du Toit, Katyayani Sharma, Jeremiah C Harrington, Fredrik Björkling, Flemming Steen Jørgensen, Amit V Pandey
{"title":"Pyridine indole hybrids as novel potent CYP17A1 inhibitors.","authors":"Tomasz M Wróbel, Angelika Grudzińska, Jibira Yakubu, Therina du Toit, Katyayani Sharma, Jeremiah C Harrington, Fredrik Björkling, Flemming Steen Jørgensen, Amit V Pandey","doi":"10.1080/14756366.2025.2463014","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is one of the most prevalent malignancies affecting men worldwide, and androgen deprivation therapy (ADT) is a primary treatment approach. CYP17A1 inhibitors like abiraterone target the steroidogenic pathway to reduce androgen levels, but their clinical efficacy is limited by drug resistance and adverse effects. This study reports the synthesis and evaluation of novel CYP17A1 inhibitors derived from a previously identified hit compound. Several analogs were synthesised, including an unexpected di-cyano derivative, which demonstrated increased potency against CYP17A1 compared to abiraterone. Biological assays revealed that these compounds significantly inhibited CYP17A1 enzymatic activity and altered steroid biosynthesis. Among the newly synthesised inhibitors, compound <b>11</b> showed the highest potency (IC<sub>50</sub> = 4 nM) and the related compound <b>14</b> presented a template for further development. A combined docking and molecular dynamics approach was used to identify the possible target binding modes of the compounds.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"40 1","pages":"2463014"},"PeriodicalIF":5.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11834790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2025.2463014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer (PCa) is one of the most prevalent malignancies affecting men worldwide, and androgen deprivation therapy (ADT) is a primary treatment approach. CYP17A1 inhibitors like abiraterone target the steroidogenic pathway to reduce androgen levels, but their clinical efficacy is limited by drug resistance and adverse effects. This study reports the synthesis and evaluation of novel CYP17A1 inhibitors derived from a previously identified hit compound. Several analogs were synthesised, including an unexpected di-cyano derivative, which demonstrated increased potency against CYP17A1 compared to abiraterone. Biological assays revealed that these compounds significantly inhibited CYP17A1 enzymatic activity and altered steroid biosynthesis. Among the newly synthesised inhibitors, compound 11 showed the highest potency (IC50 = 4 nM) and the related compound 14 presented a template for further development. A combined docking and molecular dynamics approach was used to identify the possible target binding modes of the compounds.

吡啶吲哚杂化物作为新型有效的CYP17A1抑制剂。
前列腺癌(PCa)是影响男性的最常见的恶性肿瘤之一,雄激素剥夺治疗(ADT)是主要的治疗方法。CYP17A1抑制剂如阿比特龙通过类固醇途径降低雄激素水平,但其临床疗效受耐药和不良反应的限制。本研究报道了从先前发现的hit化合物中提取的新型CYP17A1抑制剂的合成和评价。合成了几种类似物,包括一种意想不到的双氰衍生物,与阿比特龙相比,它对CYP17A1的效力更高。生物学分析显示,这些化合物显著抑制CYP17A1酶活性和改变类固醇生物合成。在新合成的抑制剂中,化合物11的效价最高(IC50 = 4 nM),相关化合物14为进一步开发提供了模板。结合对接和分子动力学方法确定了化合物可能的靶结合模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信