{"title":"Targeting adenosine enhances immunotherapy in MSS colorectal cancer with EGFRvIII mutation.","authors":"Fei Sun, Fangzhen Yao, Chunting Zeng, Yang Zhao, Bishan Liang, Shaowei Li, Yawen Wang, Qijing Wu, Yulu Shi, Zhiqi Yao, Jiao Wang, Yu Jiang, Chunhui Gu, Qiong Huang, Wangjun Liao, Na Huang, Chunlin Wang, Xiaoxiang Rong, Jing Wu, Yujing Tan, Jianjun Peng, Yong Li, Min Shi","doi":"10.1136/jitc-2024-010126","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with microsatellite stable (MSS) colorectal cancer (CRC) often display resistance to immunotherapy. Epidermal growth factor receptor (EGFR)-targeted therapies have shown potential in enhancing immunotherapy, yet clinical benefits remain unfulfilled, which may relate to inadequate patient stratification.</p><p><strong>Methods: </strong>Circulating tumor cells and tumor tissues were collected from multicenter cohorts of patients with CRC receiving cetuximab to analyze EGFR variant type III (EGFRvIII) expression and immune infiltration. Syngeneic mouse models of EGFRvIII CRC were used to investigate the combined efficacy of adenosine inhibition and antiprogrammed cell death protein 1 (anti-PD-1).</p><p><strong>Results: </strong>EGFRvIII mutations are found in about 10% of MSS CRC and are associated with poor response to cetuximab therapy. EGFRvIII-mutated patients with CRC exhibit an adenosine-mediated immunosuppressive tumor microenvironment (TME) subtype. Combination therapy with adenosine inhibitors remodels the TME, reversing cetuximab resistance and enhancing anti-PD-1 efficacy in EGFRvIII CRC.</p><p><strong>Conclusions: </strong>Our findings identified EGFRvIII-positive CRC as a distinct subtype characterized by adenosine-mediated immunosuppressive TME. Targeting adenosine significantly improved the efficacy of anti-PD-1 in MSS CRC.</p>","PeriodicalId":14820,"journal":{"name":"Journal for Immunotherapy of Cancer","volume":"13 2","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831272/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Immunotherapy of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jitc-2024-010126","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Patients with microsatellite stable (MSS) colorectal cancer (CRC) often display resistance to immunotherapy. Epidermal growth factor receptor (EGFR)-targeted therapies have shown potential in enhancing immunotherapy, yet clinical benefits remain unfulfilled, which may relate to inadequate patient stratification.
Methods: Circulating tumor cells and tumor tissues were collected from multicenter cohorts of patients with CRC receiving cetuximab to analyze EGFR variant type III (EGFRvIII) expression and immune infiltration. Syngeneic mouse models of EGFRvIII CRC were used to investigate the combined efficacy of adenosine inhibition and antiprogrammed cell death protein 1 (anti-PD-1).
Results: EGFRvIII mutations are found in about 10% of MSS CRC and are associated with poor response to cetuximab therapy. EGFRvIII-mutated patients with CRC exhibit an adenosine-mediated immunosuppressive tumor microenvironment (TME) subtype. Combination therapy with adenosine inhibitors remodels the TME, reversing cetuximab resistance and enhancing anti-PD-1 efficacy in EGFRvIII CRC.
Conclusions: Our findings identified EGFRvIII-positive CRC as a distinct subtype characterized by adenosine-mediated immunosuppressive TME. Targeting adenosine significantly improved the efficacy of anti-PD-1 in MSS CRC.
期刊介绍:
The Journal for ImmunoTherapy of Cancer (JITC) is a peer-reviewed publication that promotes scientific exchange and deepens knowledge in the constantly evolving fields of tumor immunology and cancer immunotherapy. With an open access format, JITC encourages widespread access to its findings. The journal covers a wide range of topics, spanning from basic science to translational and clinical research. Key areas of interest include tumor-host interactions, the intricate tumor microenvironment, animal models, the identification of predictive and prognostic immune biomarkers, groundbreaking pharmaceutical and cellular therapies, innovative vaccines, combination immune-based treatments, and the study of immune-related toxicity.