Predicting probiotic viability during tabletting using the finite element method integrated with a thermal tolerance model

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Bide Wang , Oleksiy V. Klymenko , Rachael Gibson , Andrew Middleton , Sam Elvin , Vishal Shinde , I. Csaba Sinka , Chuan-Yu Wu
{"title":"Predicting probiotic viability during tabletting using the finite element method integrated with a thermal tolerance model","authors":"Bide Wang ,&nbsp;Oleksiy V. Klymenko ,&nbsp;Rachael Gibson ,&nbsp;Andrew Middleton ,&nbsp;Sam Elvin ,&nbsp;Vishal Shinde ,&nbsp;I. Csaba Sinka ,&nbsp;Chuan-Yu Wu","doi":"10.1016/j.ijpharm.2025.125341","DOIUrl":null,"url":null,"abstract":"<div><div>Tablet is an effective system for delivering probiotics into the gastrointestinal tract. However, the mechanical stress, combined with the local heating generated during compaction, pose challenges to maintaining probiotic viability. Evaluating probiotic viability under various compression conditions is necessary to optimise the tabletting process. However, testing each scenario individually significantly increases development time and costs. Hence, it is of scientific and industrial importance to develop predictive models for assessing probiotic viability during compaction. In this study, a finite element (FE) model integrating the modified Drucker-Prager Cap (DPC) model with a thermal tolerance model was developed for the first time to predict the probiotic viability during powder compaction. The capability of the model in predicting mechanical behaviour, thermal response, and probiotic viability was demonstrated through comparison with experimental measurements. FE analysis revealed that the viability of the probiotic <em>Lactobacillus gasseri</em> (<em>L. gasseri</em> KS-13) decreases as the compression pressure increases, as observed experimentally. Furthermore, it is also found that pre-compression is an effective method to enhance the viability of probiotics during compaction.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125341"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001772","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Tablet is an effective system for delivering probiotics into the gastrointestinal tract. However, the mechanical stress, combined with the local heating generated during compaction, pose challenges to maintaining probiotic viability. Evaluating probiotic viability under various compression conditions is necessary to optimise the tabletting process. However, testing each scenario individually significantly increases development time and costs. Hence, it is of scientific and industrial importance to develop predictive models for assessing probiotic viability during compaction. In this study, a finite element (FE) model integrating the modified Drucker-Prager Cap (DPC) model with a thermal tolerance model was developed for the first time to predict the probiotic viability during powder compaction. The capability of the model in predicting mechanical behaviour, thermal response, and probiotic viability was demonstrated through comparison with experimental measurements. FE analysis revealed that the viability of the probiotic Lactobacillus gasseri (L. gasseri KS-13) decreases as the compression pressure increases, as observed experimentally. Furthermore, it is also found that pre-compression is an effective method to enhance the viability of probiotics during compaction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信