Deciphering the genetic basis of developmental language disorder in children without intellectual disability, autism or apraxia of speech.

IF 6.3 1区 医学 Q1 GENETICS & HEREDITY
Clothilde Ormieres, Marion Lesieur-Sebellin, Karine Siquier-Pernet, Geoffroy Delplancq, Marlene Rio, Mélanie Parisot, Patrick Nitschké, Cristina Rodriguez-Fontenla, Alison Bodineau, Lucie Narcy, Emilie Schlumberger, Vincent Cantagrel, Valérie Malan
{"title":"Deciphering the genetic basis of developmental language disorder in children without intellectual disability, autism or apraxia of speech.","authors":"Clothilde Ormieres, Marion Lesieur-Sebellin, Karine Siquier-Pernet, Geoffroy Delplancq, Marlene Rio, Mélanie Parisot, Patrick Nitschké, Cristina Rodriguez-Fontenla, Alison Bodineau, Lucie Narcy, Emilie Schlumberger, Vincent Cantagrel, Valérie Malan","doi":"10.1186/s13229-025-00642-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Developmental language disorder (DLD) refers to children who present with language difficulties that are not due to a known biomedical condition or associated with autism spectrum disorder (ASD) or intellectual disability (ID). The clinical heterogeneity of language disorders, the frequent presence of comorbidities, and the inconsistent terminology used over the years have impeded both research and clinical practice. Identifying sub-groups of children (i.e. DLD cases without childhood apraxia of speech (CAS)) with language difficulties is essential for elucidating the underlying genetic causes of this condition. DLD presents along a spectrum of severity, ranging from mild speech delays to profound disturbances in oral language structure in otherwise typically intelligent children. The prevalence of DLD is ~ 7-8% or 2% if severe forms are considered. This study aims to investigate a homogeneous cohort of DLD patients, excluding cases of ASD, ID or CAS, using multiple genomic approaches to better define the molecular basis of the disorder.</p><p><strong>Methods: </strong>Fifteen families, including 27 children with severe DLD, were enrolled. The majority of cases (n = 24) were included in multiplex families while three cases were sporadic. This resulted in a cohort of 59 individuals for whom chromosomal microarray analysis and exome or genome sequencing were performed.</p><p><strong>Results: </strong>We identified copy number variants (CNVs) predisposing to neurodevelopmental disorders with incomplete penetrance and variable expressivity in two families. These CNVs (i.e., 15q13.3 deletion and proximal 16p11.2 duplication) are interpreted as pathogenic. In one sporadic case, a de novo pathogenic variant in the ZNF292 gene, known to be associated with ID, was detected, broadening the spectrum of this syndrome.</p><p><strong>Limitations: </strong>The strict diagnostic criteria applied by our multidisciplinary team, including speech-language physicians, neuropsychologists, and paediatric neurologists, resulted in a relatively small sample size, which limit the strength of our findings.</p><p><strong>Conclusion: </strong>These findings highlight a common genetic architecture between DLD, ASD and ID, and underline the need for further investigation into overlapping neurodevelopmental pathways.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov Identifier: NCT06660108.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":"16 1","pages":"10"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11823097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-025-00642-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Developmental language disorder (DLD) refers to children who present with language difficulties that are not due to a known biomedical condition or associated with autism spectrum disorder (ASD) or intellectual disability (ID). The clinical heterogeneity of language disorders, the frequent presence of comorbidities, and the inconsistent terminology used over the years have impeded both research and clinical practice. Identifying sub-groups of children (i.e. DLD cases without childhood apraxia of speech (CAS)) with language difficulties is essential for elucidating the underlying genetic causes of this condition. DLD presents along a spectrum of severity, ranging from mild speech delays to profound disturbances in oral language structure in otherwise typically intelligent children. The prevalence of DLD is ~ 7-8% or 2% if severe forms are considered. This study aims to investigate a homogeneous cohort of DLD patients, excluding cases of ASD, ID or CAS, using multiple genomic approaches to better define the molecular basis of the disorder.

Methods: Fifteen families, including 27 children with severe DLD, were enrolled. The majority of cases (n = 24) were included in multiplex families while three cases were sporadic. This resulted in a cohort of 59 individuals for whom chromosomal microarray analysis and exome or genome sequencing were performed.

Results: We identified copy number variants (CNVs) predisposing to neurodevelopmental disorders with incomplete penetrance and variable expressivity in two families. These CNVs (i.e., 15q13.3 deletion and proximal 16p11.2 duplication) are interpreted as pathogenic. In one sporadic case, a de novo pathogenic variant in the ZNF292 gene, known to be associated with ID, was detected, broadening the spectrum of this syndrome.

Limitations: The strict diagnostic criteria applied by our multidisciplinary team, including speech-language physicians, neuropsychologists, and paediatric neurologists, resulted in a relatively small sample size, which limit the strength of our findings.

Conclusion: These findings highlight a common genetic architecture between DLD, ASD and ID, and underline the need for further investigation into overlapping neurodevelopmental pathways.

Trial registration: ClinicalTrials.gov Identifier: NCT06660108.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Autism
Molecular Autism GENETICS & HEREDITY-NEUROSCIENCES
CiteScore
12.10
自引率
1.60%
发文量
44
审稿时长
17 weeks
期刊介绍: Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信