Divergent response of grassland aboveground net primary productivity and precipitation utilization efficiency to altered precipitation patterns by process-based model.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1487907
Chen Cheng, Lu Wu, Hongyan Liu, Boyi Liang, Xinrong Zhu, Feiyun Yang
{"title":"Divergent response of grassland aboveground net primary productivity and precipitation utilization efficiency to altered precipitation patterns by process-based model.","authors":"Chen Cheng, Lu Wu, Hongyan Liu, Boyi Liang, Xinrong Zhu, Feiyun Yang","doi":"10.3389/fpls.2025.1487907","DOIUrl":null,"url":null,"abstract":"<p><p>The functioning of ecosystem services in water-limited grassland ecosystems is significantly influenced by precipitation characteristics. This study aims to quantitatively assess the impact of different precipitation scenarios on grassland productivity using the APSIM model. Historical weather data from 1968 to 2017 and observational data from three types of steppes (meadow, typical, and desert steppe) in Inner Mongolia Autonomous Region from 2004 to 2010 were collected to determine key crop variety parameters for the APSIM model. The effects of annual precipitation, seasonal precipitation, and inter-growing season precipitation variability on aboveground net primary production (ANPP) and precipitation utilization efficiency (PUE) in different types of steppes were investigated by scenario simulation by validated model. The simulated ANPP shows distinctive responses to the changed rainfall characteristics, where the influence of precipitation decreasing is more evident than precipitation increasing by the same precipitation change. Regarding steppe types, the typical steppe responded more strongly to increased precipitation, while decreased precipitation led to higher decline in ANPP for desert steppe. Precipitation during growing seasons caused more significant change than dormancy seasons regarding ANPP, however, PUE show the opposite trend, indicating the contribution of unit level precipitation changes to productivity is significant during dormancy seasons. The effect of changing precipitation during middle growing season outweighed that of late growing season and early growing season, and the positive effect of increasing precipitation were more pronounced in typical steppe and desert steppe if facing early growing season precipitation increase in the future. The research results provide a theoretical basis and technical support for optimizing grassland production management.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1487907"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1487907","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The functioning of ecosystem services in water-limited grassland ecosystems is significantly influenced by precipitation characteristics. This study aims to quantitatively assess the impact of different precipitation scenarios on grassland productivity using the APSIM model. Historical weather data from 1968 to 2017 and observational data from three types of steppes (meadow, typical, and desert steppe) in Inner Mongolia Autonomous Region from 2004 to 2010 were collected to determine key crop variety parameters for the APSIM model. The effects of annual precipitation, seasonal precipitation, and inter-growing season precipitation variability on aboveground net primary production (ANPP) and precipitation utilization efficiency (PUE) in different types of steppes were investigated by scenario simulation by validated model. The simulated ANPP shows distinctive responses to the changed rainfall characteristics, where the influence of precipitation decreasing is more evident than precipitation increasing by the same precipitation change. Regarding steppe types, the typical steppe responded more strongly to increased precipitation, while decreased precipitation led to higher decline in ANPP for desert steppe. Precipitation during growing seasons caused more significant change than dormancy seasons regarding ANPP, however, PUE show the opposite trend, indicating the contribution of unit level precipitation changes to productivity is significant during dormancy seasons. The effect of changing precipitation during middle growing season outweighed that of late growing season and early growing season, and the positive effect of increasing precipitation were more pronounced in typical steppe and desert steppe if facing early growing season precipitation increase in the future. The research results provide a theoretical basis and technical support for optimizing grassland production management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信