Enhancing glioblastoma therapy: unveiling synergistic anticancer effects of Onalespib - radiotherapy combination therapy.

IF 3.5 3区 医学 Q2 ONCOLOGY
Frontiers in Oncology Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.3389/fonc.2025.1451156
Julia Uffenorde, Mehran Hariri, Eleftherios Papalanis, Annika Staffas, Josefine Berg, Bo Stenerlöw, Hanna Berglund, Christer Malmberg, Diana Spiegelberg
{"title":"Enhancing glioblastoma therapy: unveiling synergistic anticancer effects of Onalespib - radiotherapy combination therapy.","authors":"Julia Uffenorde, Mehran Hariri, Eleftherios Papalanis, Annika Staffas, Josefine Berg, Bo Stenerlöw, Hanna Berglund, Christer Malmberg, Diana Spiegelberg","doi":"10.3389/fonc.2025.1451156","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GBM) is the deadliest form of brain cancer, impacting both adults and children, marked by exceptionally high morbidity and mortality rates, even with current standard treatments such as surgery, radiation therapy, and chemotherapy. Therefore, there is a pressing need for new therapeutic strategies to improve survival and reduce treatment side effects. In this study, we investigated the effect of HSP90 inhibition in combination with radiotherapy in established and patient-derived glioblastoma cell lines.</p><p><strong>Methods: </strong>Potential radiosensitizing effects of the HSP90 inhibitor Onalespib were studied in XTT and clonogenic survival assays as well as in tumor-mimicking multicellular spheroid models. Further, migration capacity and effects on protein expression were studied after exposure to Onalespib and radiation using Proximity Extension Assay analysis.</p><p><strong>Results: </strong>HSP90 inhibition with Onalespib synergistically enhanced the radiosensitivity of glioblastoma cells grown in 2D and 3D models, resulting in increased cell death, reduced migration capacity and activation of the apoptotic signaling pathway. The proteomic analysis of glioblastoma cells treated with Onalespib, radiation, and their combination revealed significant alterations in protein expression profiles, involved in growth signaling, immune modulation pathways and angiogenesis. Moreover, the combination treatment indicated potential for enhancing cell cycle arrest and apoptosis, suggesting promising anti-tumor effects.</p><p><strong>Conclusion: </strong>These findings demonstrate that HSP90 inhibition may be a promising strategy to enhance the efficacy of radiotherapy in the treatment of GBM, potentially leading to improved outcomes for patients battling this challenging disease.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"15 ","pages":"1451156"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2025.1451156","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma (GBM) is the deadliest form of brain cancer, impacting both adults and children, marked by exceptionally high morbidity and mortality rates, even with current standard treatments such as surgery, radiation therapy, and chemotherapy. Therefore, there is a pressing need for new therapeutic strategies to improve survival and reduce treatment side effects. In this study, we investigated the effect of HSP90 inhibition in combination with radiotherapy in established and patient-derived glioblastoma cell lines.

Methods: Potential radiosensitizing effects of the HSP90 inhibitor Onalespib were studied in XTT and clonogenic survival assays as well as in tumor-mimicking multicellular spheroid models. Further, migration capacity and effects on protein expression were studied after exposure to Onalespib and radiation using Proximity Extension Assay analysis.

Results: HSP90 inhibition with Onalespib synergistically enhanced the radiosensitivity of glioblastoma cells grown in 2D and 3D models, resulting in increased cell death, reduced migration capacity and activation of the apoptotic signaling pathway. The proteomic analysis of glioblastoma cells treated with Onalespib, radiation, and their combination revealed significant alterations in protein expression profiles, involved in growth signaling, immune modulation pathways and angiogenesis. Moreover, the combination treatment indicated potential for enhancing cell cycle arrest and apoptosis, suggesting promising anti-tumor effects.

Conclusion: These findings demonstrate that HSP90 inhibition may be a promising strategy to enhance the efficacy of radiotherapy in the treatment of GBM, potentially leading to improved outcomes for patients battling this challenging disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Oncology
Frontiers in Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
6.20
自引率
10.60%
发文量
6641
审稿时长
14 weeks
期刊介绍: Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信