Triptolide suppresses IL-1β-induced expression of interleukin-8 by inhibiting ROS-Mediated ERK, AP-1, and NF-κB molecules in human gastric cancer AGS cells.

IF 3.5 3区 医学 Q2 ONCOLOGY
Frontiers in Oncology Pub Date : 2025-01-30 eCollection Date: 2024-01-01 DOI:10.3389/fonc.2024.1498213
Shinan Li, Dhiraj Kumar Sah, Archana Arjunan, Mohamed Yazeer Ameer, Bora Lee, Young-Do Jung
{"title":"Triptolide suppresses IL-1β-induced expression of interleukin-8 by inhibiting ROS-Mediated ERK, AP-1, and NF-κB molecules in human gastric cancer AGS cells.","authors":"Shinan Li, Dhiraj Kumar Sah, Archana Arjunan, Mohamed Yazeer Ameer, Bora Lee, Young-Do Jung","doi":"10.3389/fonc.2024.1498213","DOIUrl":null,"url":null,"abstract":"<p><p>Triptolide, the major component of Chinese herbal medicine Tripterygium wilfordii Hook F, possesses potent anticancer and anti-inflammatory effects. IL-8, a proinflammatory cytokine, is associated with cancer cell proliferation and angiogenesis. Here, we found that Triptolide has an inhibitory effect on IL-1β-induced IL-8 expression in human gastric cancer cells, via the suppression of reactive oxygen species (ROS) production, AP-1, and NF-κB activation, which in turn affects human endothelial cell angiogenetic activity in tumor microenvironments. Human gastric AGS cells were treated with IL-1β (10 ng/mL) and Triptolide (0-20 nM), and the ROS generation, ERK, AP-1, and NF-κB signaling were all investigated. These results demonstrate that Triptolide inhibits the IL-1β-induced IL-8 expression in gastric cancer cells by inhibiting ROS production and angiogenesis, via the dose-dependent attenuation of ERK, AP-1, and NF-κB activation. In this study, we showed that Triptolid inhibits ROS/ERK-mediated AP-1 and ROS-mediated NF-κB axes potentially leading to an improved treatment outcome for gastric cancer and its associated tumor microenvironment.</p>","PeriodicalId":12482,"journal":{"name":"Frontiers in Oncology","volume":"14 ","pages":"1498213"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fonc.2024.1498213","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Triptolide, the major component of Chinese herbal medicine Tripterygium wilfordii Hook F, possesses potent anticancer and anti-inflammatory effects. IL-8, a proinflammatory cytokine, is associated with cancer cell proliferation and angiogenesis. Here, we found that Triptolide has an inhibitory effect on IL-1β-induced IL-8 expression in human gastric cancer cells, via the suppression of reactive oxygen species (ROS) production, AP-1, and NF-κB activation, which in turn affects human endothelial cell angiogenetic activity in tumor microenvironments. Human gastric AGS cells were treated with IL-1β (10 ng/mL) and Triptolide (0-20 nM), and the ROS generation, ERK, AP-1, and NF-κB signaling were all investigated. These results demonstrate that Triptolide inhibits the IL-1β-induced IL-8 expression in gastric cancer cells by inhibiting ROS production and angiogenesis, via the dose-dependent attenuation of ERK, AP-1, and NF-κB activation. In this study, we showed that Triptolid inhibits ROS/ERK-mediated AP-1 and ROS-mediated NF-κB axes potentially leading to an improved treatment outcome for gastric cancer and its associated tumor microenvironment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Oncology
Frontiers in Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
6.20
自引率
10.60%
发文量
6641
审稿时长
14 weeks
期刊介绍: Cancer Imaging and Diagnosis is dedicated to the publication of results from clinical and research studies applied to cancer diagnosis and treatment. The section aims to publish studies from the entire field of cancer imaging: results from routine use of clinical imaging in both radiology and nuclear medicine, results from clinical trials, experimental molecular imaging in humans and small animals, research on new contrast agents in CT, MRI, ultrasound, publication of new technical applications and processing algorithms to improve the standardization of quantitative imaging and image guided interventions for the diagnosis and treatment of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信