Optimized measurement methods and systems for the dielectric properties of active biological tissues in the 10Hz-100 MHz frequency range.

IF 3.2 3区 医学 Q2 PHYSIOLOGY
Frontiers in Physiology Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.3389/fphys.2025.1537537
Yueying Shi, Xiaoxiao Bai, Jingrong Yang, Xinyu Wu, Lei Wang
{"title":"Optimized measurement methods and systems for the dielectric properties of active biological tissues in the 10Hz-100 MHz frequency range.","authors":"Yueying Shi, Xiaoxiao Bai, Jingrong Yang, Xinyu Wu, Lei Wang","doi":"10.3389/fphys.2025.1537537","DOIUrl":null,"url":null,"abstract":"<p><p>The dielectric properties of active biological tissues within the 10Hz-100 MHz frequency range contain rich information about tissue morphology and function. Accurately understanding the dielectric properties of active human tissues holds significant value for disease diagnosis and electromagnetic protection. However, accurately measuring these properties has been challenging due to factors such as electrode polarization and distribution parameters. This study has developed a dual-purpose measuring cell that supports both four-electrode and two-electrode impedance measurements. Leveraging this development, we have established a system and methodology that is well-suited for the dielectric property measurement of active biological tissues within the frequency range of 10Hz to 100 MHz. Our measurements of dielectric properties in NaCl solutions of varying concentrations and pig liver tissues demonstrate the system's high accuracy and repeatability. For NaCl solutions, the maximum relative deviation is only 6.34%, with an average deviation of less than 1.5%. For pig liver tissues, the overall relative deviation is below 6%. Through the integration of the four-electrode and two-electrode measurement systems, we have successfully addressed the challenges of electrode polarization at low frequencies and the influence of distribution parameters at high frequencies, achieving a significant improvement in measurement accuracy across the spectrum.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1537537"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1537537","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dielectric properties of active biological tissues within the 10Hz-100 MHz frequency range contain rich information about tissue morphology and function. Accurately understanding the dielectric properties of active human tissues holds significant value for disease diagnosis and electromagnetic protection. However, accurately measuring these properties has been challenging due to factors such as electrode polarization and distribution parameters. This study has developed a dual-purpose measuring cell that supports both four-electrode and two-electrode impedance measurements. Leveraging this development, we have established a system and methodology that is well-suited for the dielectric property measurement of active biological tissues within the frequency range of 10Hz to 100 MHz. Our measurements of dielectric properties in NaCl solutions of varying concentrations and pig liver tissues demonstrate the system's high accuracy and repeatability. For NaCl solutions, the maximum relative deviation is only 6.34%, with an average deviation of less than 1.5%. For pig liver tissues, the overall relative deviation is below 6%. Through the integration of the four-electrode and two-electrode measurement systems, we have successfully addressed the challenges of electrode polarization at low frequencies and the influence of distribution parameters at high frequencies, achieving a significant improvement in measurement accuracy across the spectrum.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信