Neural correlates of semantic and phonemic variants of verbal fluency tasks: A combined MEG and fMRI study.

IF 3.7 3区 医学 Q1 CLINICAL NEUROLOGY
Alexandru Mihai Dumitrescu, Tim Coolen, Vincent Wens, Antonin Rovai, Nicola Trotta, Charline Urbain, Xavier De Tiège
{"title":"Neural correlates of semantic and phonemic variants of verbal fluency tasks: A combined MEG and fMRI study.","authors":"Alexandru Mihai Dumitrescu, Tim Coolen, Vincent Wens, Antonin Rovai, Nicola Trotta, Charline Urbain, Xavier De Tiège","doi":"10.1016/j.clinph.2025.01.015","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The neural correlates of verbal fluency tasks (VFT) have been characterized by functional magnetic resonance imaging (fMRI). Still, the spatio-spectral neural oscillatory dynamics elicited by VFT and the differences between their semantic and phonologic variants are unsettled. We investigate, using fMRI and magnetoencephalography (MEG), the neural correlates of VFT and the differences in neural oscillatory dynamics between phonological (PFT) and semantic (SFT) fluency tasks.</p><p><strong>Methods: </strong>Thirty right-handed healthy adults underwent MEG and fMRI recordings while performing covert PFT and SFT.</p><p><strong>Results: </strong>fMRI showed different neural networks for PFT (left-dominant lexical-semantic control network) and SFT (nodes of the left-dominant semantic network). MEG showed beta-band power suppression in the left operculum in both VFT, with no difference between PFT and SFT.</p><p><strong>Conclusions: </strong>MEG and fMRI detect distinct task-induced neural activity changes during VFT. MEG findings likely reflect the neural consequences of covert word production initiated at the inferior/middle frontal gyri, as identified by fMRI.</p><p><strong>Significance: </strong>This study demonstrates the added value of combining MEG and fMRI to fully characterize VFT network dynamics. It paves the way for the use of VFT for non-invasive presurgical language mapping using a method free of neurovascular uncoupling.</p>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.clinph.2025.01.015","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The neural correlates of verbal fluency tasks (VFT) have been characterized by functional magnetic resonance imaging (fMRI). Still, the spatio-spectral neural oscillatory dynamics elicited by VFT and the differences between their semantic and phonologic variants are unsettled. We investigate, using fMRI and magnetoencephalography (MEG), the neural correlates of VFT and the differences in neural oscillatory dynamics between phonological (PFT) and semantic (SFT) fluency tasks.

Methods: Thirty right-handed healthy adults underwent MEG and fMRI recordings while performing covert PFT and SFT.

Results: fMRI showed different neural networks for PFT (left-dominant lexical-semantic control network) and SFT (nodes of the left-dominant semantic network). MEG showed beta-band power suppression in the left operculum in both VFT, with no difference between PFT and SFT.

Conclusions: MEG and fMRI detect distinct task-induced neural activity changes during VFT. MEG findings likely reflect the neural consequences of covert word production initiated at the inferior/middle frontal gyri, as identified by fMRI.

Significance: This study demonstrates the added value of combining MEG and fMRI to fully characterize VFT network dynamics. It paves the way for the use of VFT for non-invasive presurgical language mapping using a method free of neurovascular uncoupling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Neurophysiology
Clinical Neurophysiology 医学-临床神经学
CiteScore
8.70
自引率
6.40%
发文量
932
审稿时长
59 days
期刊介绍: As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology. Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信