{"title":"The Role of Electrochemical Sensors in Enhancing HIV Detection.","authors":"Xingxing Li, Jiangwei Zhu, Li Fu","doi":"10.2174/011570162X363311250206045837","DOIUrl":null,"url":null,"abstract":"<p><p>Human Immunodeficiency Virus (HIV) remains a significant global health challenge, necessitating rapid, sensitive, and accessible diagnostic tools. We examined recent advancements in electrochemical sensors for HIV gene detection, focusing on various sensing strategies, nanomaterial integration, and novel platform designs. Electrochemical sensors have demonstrated remarkable progress in HIV detection, offering high sensitivity and specificity. DNA/RNA-based sensors, aptamer approaches, and nanostructured platforms have detection limits as low as attomolar concentrations. Innovative signal amplification techniques, such as branched DNA amplification and toehold strand displacement reactions, have further enhanced sensitivity. Multiplexed detection systems enable simultaneous quantification of multiple HIV targets and related biomarkers. Integration of microfluidic technologies has improved sample processing and detection efficiency. Paper-based sensors show promise for low-cost, disposable testing platforms suit-able for resource-limited settings. While challenges remain in terms of selectivity in complex biological samples and point-of-care applicability, electrochemical sensors hold great potential for revolutionizing HIV diagnostics. Future developments in recognition elements, artificial intelligence integration, and combined sensing modalities are expected to address current limitations and expand the capabilities of these sensors, ultimately contributing to improved HIV management and epidemic control strategies.</p>","PeriodicalId":10911,"journal":{"name":"Current HIV Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current HIV Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570162X363311250206045837","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human Immunodeficiency Virus (HIV) remains a significant global health challenge, necessitating rapid, sensitive, and accessible diagnostic tools. We examined recent advancements in electrochemical sensors for HIV gene detection, focusing on various sensing strategies, nanomaterial integration, and novel platform designs. Electrochemical sensors have demonstrated remarkable progress in HIV detection, offering high sensitivity and specificity. DNA/RNA-based sensors, aptamer approaches, and nanostructured platforms have detection limits as low as attomolar concentrations. Innovative signal amplification techniques, such as branched DNA amplification and toehold strand displacement reactions, have further enhanced sensitivity. Multiplexed detection systems enable simultaneous quantification of multiple HIV targets and related biomarkers. Integration of microfluidic technologies has improved sample processing and detection efficiency. Paper-based sensors show promise for low-cost, disposable testing platforms suit-able for resource-limited settings. While challenges remain in terms of selectivity in complex biological samples and point-of-care applicability, electrochemical sensors hold great potential for revolutionizing HIV diagnostics. Future developments in recognition elements, artificial intelligence integration, and combined sensing modalities are expected to address current limitations and expand the capabilities of these sensors, ultimately contributing to improved HIV management and epidemic control strategies.
期刊介绍:
Current HIV Research covers all the latest and outstanding developments of HIV research by publishing original research, review articles and guest edited thematic issues. The novel pioneering work in the basic and clinical fields on all areas of HIV research covers: virus replication and gene expression, HIV assembly, virus-cell interaction, viral pathogenesis, epidemiology and transmission, anti-retroviral therapy and adherence, drug discovery, the latest developments in HIV/AIDS vaccines and animal models, mechanisms and interactions with AIDS related diseases, social and public health issues related to HIV disease, and prevention of viral infection. Periodically, the journal invites guest editors to devote an issue on a particular area of HIV research of great interest that increases our understanding of the virus and its complex interaction with the host.