{"title":"Macrophage-to-Myofibroblast Transition Contributes to Cutaneous Scarring Formation Through the TGF-β/Smad3 Signaling Pathways.","authors":"Yuan Jia, Yi Qin, Feng-Lai Yuan, Jie-Hong Shen","doi":"10.1002/cbin.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Cutaneous scarring typically arises after surgery, trauma, and infection, occurring when normal skin tissue is replaced by fibrous tissue during the healing process. Myofibroblasts have been identified as a significant contributor to this scarring. While the differentiation of fibroblasts into myofibroblasts is well-recognized as essential for wound healing and tissue repair, the mechanisms underlying the macrophage-myofibroblast transition (MMT) remain largely unexplored. This study aimed to investigate the role and potential mechanisms of MMT in cutaneous scarring. In specimens of hypertrophic scars, keloid and scleroderma, we confirmed the coexistence of MMT markers CD68 and α-smooth muscle actin (α-SMA) in areas of skin fibrosis. Additionally, most MMT cells in human cutaneous scar co-expressed the M2-type macrophage marker CD206. Fate-mapping in Lyz2-Cre/Rosa26-tdTomato mice further demonstrated that the majority of myofibroblasts in cutaneous scars were derived from bone marrow macrophages. Furthermore, higher levels of TGF-β were released from scar fibroblasts, which contributed to MMT through the Smad3 pathways. In vivo studies inhibiting Smad3 reduced MMT and scarring. Macrophage depletion with clodronate liposomes also reduced cutaneous scar formation. Our findings indicate that MMT plays a pivotal role in cutaneous scarring through the TGF-β/Smad3 pathways. Consequently, inhibiting MMT may be a novel strategy for the treatment of cutaneous scarring.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.70002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cutaneous scarring typically arises after surgery, trauma, and infection, occurring when normal skin tissue is replaced by fibrous tissue during the healing process. Myofibroblasts have been identified as a significant contributor to this scarring. While the differentiation of fibroblasts into myofibroblasts is well-recognized as essential for wound healing and tissue repair, the mechanisms underlying the macrophage-myofibroblast transition (MMT) remain largely unexplored. This study aimed to investigate the role and potential mechanisms of MMT in cutaneous scarring. In specimens of hypertrophic scars, keloid and scleroderma, we confirmed the coexistence of MMT markers CD68 and α-smooth muscle actin (α-SMA) in areas of skin fibrosis. Additionally, most MMT cells in human cutaneous scar co-expressed the M2-type macrophage marker CD206. Fate-mapping in Lyz2-Cre/Rosa26-tdTomato mice further demonstrated that the majority of myofibroblasts in cutaneous scars were derived from bone marrow macrophages. Furthermore, higher levels of TGF-β were released from scar fibroblasts, which contributed to MMT through the Smad3 pathways. In vivo studies inhibiting Smad3 reduced MMT and scarring. Macrophage depletion with clodronate liposomes also reduced cutaneous scar formation. Our findings indicate that MMT plays a pivotal role in cutaneous scarring through the TGF-β/Smad3 pathways. Consequently, inhibiting MMT may be a novel strategy for the treatment of cutaneous scarring.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.