Preparation and performance analysis of zinc-iron-based nanomaterials for targeted transport.

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Bio-medical materials and engineering Pub Date : 2025-01-01 Epub Date: 2024-12-10 DOI:10.1177/09592989241296437
Wenwen Cheng, Jin Zhang, Na Lin, Ding Yuan, Shuai Zhang, Zhonggang Yang, Tianyi Cao
{"title":"Preparation and performance analysis of zinc-iron-based nanomaterials for targeted transport.","authors":"Wenwen Cheng, Jin Zhang, Na Lin, Ding Yuan, Shuai Zhang, Zhonggang Yang, Tianyi Cao","doi":"10.1177/09592989241296437","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Nanomaterials have applications in traditional Chinese medicine in the fields of medical equipment manufacturing, targeted transportation, and drug synergistic therapy.</p><p><strong>Objective: </strong>The research aims to discuss the performance and performance of zinc-iron-based nanomaterials in medical drug delivery and synergistic drug therapy.</p><p><strong>Methods: </strong>Using Prussian materials as precursors, magnetic zinc-iron nanomaterials were prepared by ZnCl<sub>2</sub> and K<sub>3</sub>[Fe (CN)<sub>6</sub>]. Moreover, the morphology and composition of the material were analyzed.</p><p><strong>Results: </strong>X-ray analysis was conducted on the prepared Zn<sub>3</sub>[Fe (CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O nanomaterials, and their purity met the design requirements. At the same time, drug loading analysis was conducted on Zn<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O, and the release of capsaicin reached 86.3% under a certain phosphate buffer solution. Meanwhile, Zn<sub>3</sub>[Fe (CN)<sub>6</sub>]<sub>2</sub>·xH2O loaded tetracycline could release up to 90% in phosphate buffer solution. Antibacterial tests were conducted on self-made Zn<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O samples and ZnFe<sub>2</sub>O<sub>4</sub>/ZnO. The Zn<sub>3</sub>[Fe(CN)<sub>6</sub>]<sub>2</sub>·xH<sub>2</sub>O samples showed a more significant inhibitory effect on cancer cells after loading with capsaicin.</p><p><strong>Conclusion: </strong>The zinc-iron-based nanomaterials prepared by the research have excellent performance in drug loading and safety, indicating their significant potential for development in the medical field.</p>","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"36 1","pages":"3-14"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09592989241296437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Nanomaterials have applications in traditional Chinese medicine in the fields of medical equipment manufacturing, targeted transportation, and drug synergistic therapy.

Objective: The research aims to discuss the performance and performance of zinc-iron-based nanomaterials in medical drug delivery and synergistic drug therapy.

Methods: Using Prussian materials as precursors, magnetic zinc-iron nanomaterials were prepared by ZnCl2 and K3[Fe (CN)6]. Moreover, the morphology and composition of the material were analyzed.

Results: X-ray analysis was conducted on the prepared Zn3[Fe (CN)6]2·xH2O nanomaterials, and their purity met the design requirements. At the same time, drug loading analysis was conducted on Zn3[Fe(CN)6]2·xH2O, and the release of capsaicin reached 86.3% under a certain phosphate buffer solution. Meanwhile, Zn3[Fe (CN)6]2·xH2O loaded tetracycline could release up to 90% in phosphate buffer solution. Antibacterial tests were conducted on self-made Zn3[Fe(CN)6]2·xH2O samples and ZnFe2O4/ZnO. The Zn3[Fe(CN)6]2·xH2O samples showed a more significant inhibitory effect on cancer cells after loading with capsaicin.

Conclusion: The zinc-iron-based nanomaterials prepared by the research have excellent performance in drug loading and safety, indicating their significant potential for development in the medical field.

背景:纳米材料在中药的医疗器械制造、靶向运输、药物协同治疗等领域均有应用:本研究旨在探讨锌铁基纳米材料在医用药物输送和药物协同治疗中的性能和表现:方法:以普鲁士材料为前驱体,通过ZnCl2和K3[Fe (CN)6]制备了磁性锌铁纳米材料。结果:对制备的磁性锌铁纳米材料进行了 X 射线分析:对制备的 Zn3[Fe (CN)6]2-xH2O 纳米材料进行了 X 射线分析,其纯度符合设计要求。同时,对 Zn3[Fe(CN)6]2-xH2O 进行了载药量分析,在一定的磷酸盐缓冲溶液中,辣椒素的释放量达到了 86.3%。同时,Zn3[Fe (CN)6]2-xH2O负载的四环素在磷酸盐缓冲溶液中的释放率高达90%。对自制的 Zn3[Fe(CN)6]2-xH2O 样品和 ZnFe2O4/ZnO 进行了抗菌测试。结果表明,Zn3[Fe(CN)6]2-xH2O 样品在添加辣椒素后对癌细胞有更明显的抑制作用:结论:该研究制备的锌铁基纳米材料具有优异的载药性能和安全性,表明其在医疗领域具有巨大的发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信