Intron Retention, an Orchestrated Program of Gene Expression Regulation.

IF 3.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
BioEssays Pub Date : 2025-02-14 DOI:10.1002/bies.202400248
Hua Zhou, Xing Wang Deng
{"title":"Intron Retention, an Orchestrated Program of Gene Expression Regulation.","authors":"Hua Zhou, Xing Wang Deng","doi":"10.1002/bies.202400248","DOIUrl":null,"url":null,"abstract":"<p><p>Intron retention (IR), a well-conserved form of alternative splicing, is widespread among eukaryotic organisms. It serves as an orchestrated program for regulating gene expression. A previously reported role of IR is to induce intron-retained transcript (IRT) degradation via the nonsense-mediated mRNA decay (NMD) pathway, resulting in the downregulation of gene expression. However, accumulating evidence indicates that most IRTs are detained in the nucleus, and thus, IR can downregulate gene expression through the storage of IRTs in the nucleus. Although the importance of IRTs in gene expression regulation is well established, the detailed mechanisms remain unclear. Here, we propose a potential model to explain how IRTs are retained in the nucleus and respond to environmental changes or developmental transitions. Plenty of future studies are still ahead of us to fully dissect the biological function of IR and the underlying mechanisms.</p>","PeriodicalId":9264,"journal":{"name":"BioEssays","volume":" ","pages":"e202400248"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEssays","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bies.202400248","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intron retention (IR), a well-conserved form of alternative splicing, is widespread among eukaryotic organisms. It serves as an orchestrated program for regulating gene expression. A previously reported role of IR is to induce intron-retained transcript (IRT) degradation via the nonsense-mediated mRNA decay (NMD) pathway, resulting in the downregulation of gene expression. However, accumulating evidence indicates that most IRTs are detained in the nucleus, and thus, IR can downregulate gene expression through the storage of IRTs in the nucleus. Although the importance of IRTs in gene expression regulation is well established, the detailed mechanisms remain unclear. Here, we propose a potential model to explain how IRTs are retained in the nucleus and respond to environmental changes or developmental transitions. Plenty of future studies are still ahead of us to fully dissect the biological function of IR and the underlying mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BioEssays
BioEssays 生物-生化与分子生物学
CiteScore
7.30
自引率
2.50%
发文量
167
审稿时长
4-8 weeks
期刊介绍: molecular – cellular – biomedical – physiology – translational research – systems - hypotheses encouraged BioEssays is a peer-reviewed, review-and-discussion journal. Our aims are to publish novel insights, forward-looking reviews and commentaries in contemporary biology with a molecular, genetic, cellular, or physiological dimension, and serve as a discussion forum for new ideas in these areas. An additional goal is to encourage transdisciplinarity and integrative biology in the context of organismal studies, systems approaches, through to ecosystems, where appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信