Nouria Jantz-Naeem, Nese Guvencli, Romy Böttcher-Loschinski, Martin Böttcher, Dimitrios Mougiakakos, Sascha Kahlfuss
{"title":"Metabolic T-cell phenotypes: from bioenergetics to function.","authors":"Nouria Jantz-Naeem, Nese Guvencli, Romy Böttcher-Loschinski, Martin Böttcher, Dimitrios Mougiakakos, Sascha Kahlfuss","doi":"10.1152/ajpcell.00478.2024","DOIUrl":null,"url":null,"abstract":"<p><p>It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1062-C1075"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00478.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known that T-cell metabolism and function are intimately linked. Metabolic reprogramming is a dynamic process that provides the necessary energy and biosynthetic precursors while actively regulating the immune response of T cells. As such, aberrations and dysfunctions in metabolic (re)programming, resulting in altered metabolic endotypes, may have an impact on disease pathology in various contexts. With the increasing demand for personalized and highly specialized medicine and immunotherapy, understanding metabolic profiles and T-cell subset dependence on specific metabolites will be crucial to harness the therapeutic potential of immunometabolism and T cell bioenergetics. In this review, we dissect metabolic alterations in different T-cell subsets in autoimmune and viral inflammation, T cell and non-T-cell malignancies, highlighting potential anchor points for future treatment and therapeutic exploitation.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.