Extracellular microvesicles/exosomes - magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity.
Mariusz Z Ratajczak, Kannathasan Thetchinamoorthy, Diana Wierzbicka, Adrian Konopko, Janina Ratajczak, Magdalena Kucia
{"title":"Extracellular microvesicles/exosomes - magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity.","authors":"Mariusz Z Ratajczak, Kannathasan Thetchinamoorthy, Diana Wierzbicka, Adrian Konopko, Janina Ratajczak, Magdalena Kucia","doi":"10.1093/stmcls/sxae086","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular microvesicles (ExMVs) were one of the first communication platforms between cells that emerged early in evolution. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that plays an important role in cellular physiology and some pathological processes. ExMVs interact with target cells and may stimulate them by ligands expressed on their surface and/or transfer to the target cells their cargo comprising various RNA species, proteins, bioactive lipids, and signaling nucleotides. These small vesicles can also hijack some organelles from the cells and, in particular, transfer mitochondria, which are currently the focus of scientific interest for their potential application in clinical settings. Different mechanisms exist for transferring mitochondria between cells, including their encapsulation in ExMVs or their uptake in a \"naked\" form. It has also been demonstrated that mitochondria transfer may involve direct cell-cell connections by signaling nanotubules. In addition, evidence accumulated that ExMVs could be enriched for regulatory molecules, including some miRNA species and proteins that regulate the function of mitochondria in the target cells. Recently, a new beneficial effect of mitochondrial transfer has been reported based on inducing the mitophagy process, removing damaged mitochondria in the recipient cells to improve their energetic state. Based on this novel role of ExMVs in powering the energetic state of target cells, we present a current point of view on this topic and review some selected most recent discoveries and recently published most relevant papers.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae086","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular microvesicles (ExMVs) were one of the first communication platforms between cells that emerged early in evolution. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that plays an important role in cellular physiology and some pathological processes. ExMVs interact with target cells and may stimulate them by ligands expressed on their surface and/or transfer to the target cells their cargo comprising various RNA species, proteins, bioactive lipids, and signaling nucleotides. These small vesicles can also hijack some organelles from the cells and, in particular, transfer mitochondria, which are currently the focus of scientific interest for their potential application in clinical settings. Different mechanisms exist for transferring mitochondria between cells, including their encapsulation in ExMVs or their uptake in a "naked" form. It has also been demonstrated that mitochondria transfer may involve direct cell-cell connections by signaling nanotubules. In addition, evidence accumulated that ExMVs could be enriched for regulatory molecules, including some miRNA species and proteins that regulate the function of mitochondria in the target cells. Recently, a new beneficial effect of mitochondrial transfer has been reported based on inducing the mitophagy process, removing damaged mitochondria in the recipient cells to improve their energetic state. Based on this novel role of ExMVs in powering the energetic state of target cells, we present a current point of view on this topic and review some selected most recent discoveries and recently published most relevant papers.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.