Mesoporous Semi-Permeable Flexible Polyurethane Membranes: Advancing Bioartificial Pancreas Design for Type 1 Diabetes Treatment.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Bryan Gross, Emeline Lobry, Séverine Sigrist, Elisa Maillard, Jordan Magisson, Charles-Thibault Burcez, Manuel Pires, Anne Hébraud, Guy Schlatter
{"title":"Mesoporous Semi-Permeable Flexible Polyurethane Membranes: Advancing Bioartificial Pancreas Design for Type 1 Diabetes Treatment.","authors":"Bryan Gross, Emeline Lobry, Séverine Sigrist, Elisa Maillard, Jordan Magisson, Charles-Thibault Burcez, Manuel Pires, Anne Hébraud, Guy Schlatter","doi":"10.1002/marc.202500049","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the development of elastomeric mesoporous polyurethane (PU) membranes for bioartificial pancreas applications in type 1 diabetes treatment. The membranes are designed to exhibit semi-permeable properties, enabling insulin diffusion while restricting larger immune molecules, such as immunoglobulin G (IgG). Although electrospinning is a widely used technique for fabricating porous membranes for controlled drug release, it typically results in an average pore size on the order of few micrometers, which is two orders of magnitude larger than the mesoporous scale required. In this work, a green-electrospinning process using waterborne PU suspension and poly(ethylene oxide) (PEO) is employed, followed by thermal annealing and washing steps. The resulting membranes exhibit a controlled pore size in the mesoporous range (≈20 nm measured by capillary flow porometry). Diffusion tests confirmed selective permeability, with a recovery rate of 25% for insulin and a recovery rate below 5% for IgG, meeting therapeutic needs. In vivo characterizations show no degradation and good biocompatibility of the membranes without chronic inflammation. Moreover, mechanical characterization demonstrates the membranes' flexibility and strength, making them suitable for minimally invasive surgical implantation. These findings underscore the potential of PU membranes for long-term biomedical applications, addressing critical challenges in permeability and mechanical stability.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2500049"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202500049","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the development of elastomeric mesoporous polyurethane (PU) membranes for bioartificial pancreas applications in type 1 diabetes treatment. The membranes are designed to exhibit semi-permeable properties, enabling insulin diffusion while restricting larger immune molecules, such as immunoglobulin G (IgG). Although electrospinning is a widely used technique for fabricating porous membranes for controlled drug release, it typically results in an average pore size on the order of few micrometers, which is two orders of magnitude larger than the mesoporous scale required. In this work, a green-electrospinning process using waterborne PU suspension and poly(ethylene oxide) (PEO) is employed, followed by thermal annealing and washing steps. The resulting membranes exhibit a controlled pore size in the mesoporous range (≈20 nm measured by capillary flow porometry). Diffusion tests confirmed selective permeability, with a recovery rate of 25% for insulin and a recovery rate below 5% for IgG, meeting therapeutic needs. In vivo characterizations show no degradation and good biocompatibility of the membranes without chronic inflammation. Moreover, mechanical characterization demonstrates the membranes' flexibility and strength, making them suitable for minimally invasive surgical implantation. These findings underscore the potential of PU membranes for long-term biomedical applications, addressing critical challenges in permeability and mechanical stability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信