Indacenodithiophene-Based Medium-Bandgap Guest Acceptor Enables High-Efficiency Ternary Organic Solar Cells.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Nailiang Qiu, Chunyan Liu, Tengteng Zhang, Jiaxuan Li, Wenhui Zhang, Jun Yan, Shiqun You, Yan Lu
{"title":"Indacenodithiophene-Based Medium-Bandgap Guest Acceptor Enables High-Efficiency Ternary Organic Solar Cells.","authors":"Nailiang Qiu, Chunyan Liu, Tengteng Zhang, Jiaxuan Li, Wenhui Zhang, Jun Yan, Shiqun You, Yan Lu","doi":"10.1002/marc.202401005","DOIUrl":null,"url":null,"abstract":"<p><p>The ternary organic solar cells (OSCs) have been proven to be an effective strategy for achieving high power conversion efficiency (PCE), exhibiting substantial potential for continuous enhancement of device performance. In this work, a novel nonfullerene acceptor, IDT-FN, is developed utilizing a renowned indacenodithiophene (IDT) core and moderately intense electron-withdrawing terminal groups, serving as the third component in ternary OSCs. IDT-FN demonstrates excellent complementary light absorption and cascaded energy levels with the host materials D18 and CH-6F, resulting in enhanced photon harvesting and charge transport within the ternary blend. Therefore, even the as-cast ternary device manages to surpass the optimal binary host device, achieving a superior PCE of 17.34% compared to the latter's 17.08%. Through optimization, the optimal ternary devices attain an impressive PCE of 18.32%, accompanied by a high open-circuit voltage (V<sub>oc</sub>) of 0.897 V, a fill factor of 0.745, and a short-circuit current density (J<sub>sc</sub>) of 27.41 mA cm<sup>-2</sup>. This demonstrates a significant success in utilizing IDT-based medium-bandgap guests to achieve state-of-the-art ternary OSCs.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401005"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401005","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The ternary organic solar cells (OSCs) have been proven to be an effective strategy for achieving high power conversion efficiency (PCE), exhibiting substantial potential for continuous enhancement of device performance. In this work, a novel nonfullerene acceptor, IDT-FN, is developed utilizing a renowned indacenodithiophene (IDT) core and moderately intense electron-withdrawing terminal groups, serving as the third component in ternary OSCs. IDT-FN demonstrates excellent complementary light absorption and cascaded energy levels with the host materials D18 and CH-6F, resulting in enhanced photon harvesting and charge transport within the ternary blend. Therefore, even the as-cast ternary device manages to surpass the optimal binary host device, achieving a superior PCE of 17.34% compared to the latter's 17.08%. Through optimization, the optimal ternary devices attain an impressive PCE of 18.32%, accompanied by a high open-circuit voltage (Voc) of 0.897 V, a fill factor of 0.745, and a short-circuit current density (Jsc) of 27.41 mA cm-2. This demonstrates a significant success in utilizing IDT-based medium-bandgap guests to achieve state-of-the-art ternary OSCs.

三元有机太阳能电池(OSCs)已被证明是实现高功率转换效率(PCE)的有效策略,并展现出持续提升器件性能的巨大潜力。在这项研究中,利用著名的茚并二噻吩(IDT)内核和强度适中的电子吸收端基,开发出一种新型非富勒烯受体 IDT-FN,作为三元有机太阳能电池的第三组分。IDT-FN 与宿主材料 D18 和 CH-6F 具有出色的互补光吸收和级联能级,从而增强了三元共混物中的光子收集和电荷传输。因此,即使是铸模三元器件也能超越最佳二元主器件,实现 17.34% 的优异 PCE,而后者仅为 17.08%。通过优化,最佳三元器件的 PCE 达到了惊人的 18.32%,同时具有 0.897 V 的高开路电压 (Voc)、0.745 的填充因子和 27.41 mA cm-2 的短路电流密度 (Jsc)。这表明,利用基于 IDT 的中等带隙客体实现最先进的三元 OSC 取得了重大成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信